v8  3.25.30(node0.11.13)
V8 is Google's open source JavaScript engine
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
hydrogen-environment-liveness.cc
Go to the documentation of this file.
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 
30 
31 
32 namespace v8 {
33 namespace internal {
34 
35 
37  HGraph* graph)
38  : HPhase("H_Environment liveness analysis", graph),
39  block_count_(graph->blocks()->length()),
40  maximum_environment_size_(graph->maximum_environment_size()),
41  live_at_block_start_(block_count_, zone()),
42  first_simulate_(block_count_, zone()),
43  first_simulate_invalid_for_index_(block_count_, zone()),
44  markers_(maximum_environment_size_, zone()),
45  collect_markers_(true),
46  last_simulate_(NULL),
47  went_live_since_last_simulate_(maximum_environment_size_, zone()) {
48  ASSERT(maximum_environment_size_ > 0);
49  for (int i = 0; i < block_count_; ++i) {
50  live_at_block_start_.Add(
51  new(zone()) BitVector(maximum_environment_size_, zone()), zone());
52  first_simulate_.Add(NULL, zone());
53  first_simulate_invalid_for_index_.Add(
54  new(zone()) BitVector(maximum_environment_size_, zone()), zone());
55  }
56 }
57 
58 
59 void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlot(
60  int index, HSimulate* simulate) {
61  int operand_index = simulate->ToOperandIndex(index);
62  if (operand_index == -1) {
63  simulate->AddAssignedValue(index, graph()->GetConstantUndefined());
64  } else {
65  simulate->SetOperandAt(operand_index, graph()->GetConstantUndefined());
66  }
67 }
68 
69 
70 void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlotsInSuccessors(
71  HBasicBlock* block, BitVector* live) {
72  // When a value is live in successor A but dead in B, we must
73  // explicitly zap it in B.
74  for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
75  HBasicBlock* successor = it.Current();
76  int successor_id = successor->block_id();
77  BitVector* live_in_successor = live_at_block_start_[successor_id];
78  if (live_in_successor->Equals(*live)) continue;
79  for (int i = 0; i < live->length(); ++i) {
80  if (!live->Contains(i)) continue;
81  if (live_in_successor->Contains(i)) continue;
82  if (first_simulate_invalid_for_index_.at(successor_id)->Contains(i)) {
83  continue;
84  }
85  HSimulate* simulate = first_simulate_.at(successor_id);
86  if (simulate == NULL) continue;
87  ASSERT(simulate->closure().is_identical_to(
88  block->last_environment()->closure()));
89  ZapEnvironmentSlot(i, simulate);
90  }
91  }
92 }
93 
94 
95 void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlotsForInstruction(
96  HEnvironmentMarker* marker) {
97  if (!marker->CheckFlag(HValue::kEndsLiveRange)) return;
98  HSimulate* simulate = marker->next_simulate();
99  if (simulate != NULL) {
100  ASSERT(simulate->closure().is_identical_to(marker->closure()));
101  ZapEnvironmentSlot(marker->index(), simulate);
102  }
103 }
104 
105 
106 void HEnvironmentLivenessAnalysisPhase::UpdateLivenessAtBlockEnd(
107  HBasicBlock* block,
108  BitVector* live) {
109  // Liveness at the end of each block: union of liveness in successors.
110  live->Clear();
111  for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
112  live->Union(*live_at_block_start_[it.Current()->block_id()]);
113  }
114 }
115 
116 
117 void HEnvironmentLivenessAnalysisPhase::UpdateLivenessAtInstruction(
118  HInstruction* instr,
119  BitVector* live) {
120  switch (instr->opcode()) {
121  case HValue::kEnvironmentMarker: {
122  HEnvironmentMarker* marker = HEnvironmentMarker::cast(instr);
123  int index = marker->index();
124  if (!live->Contains(index)) {
125  marker->SetFlag(HValue::kEndsLiveRange);
126  } else {
127  marker->ClearFlag(HValue::kEndsLiveRange);
128  }
129  if (!went_live_since_last_simulate_.Contains(index)) {
130  marker->set_next_simulate(last_simulate_);
131  }
132  if (marker->kind() == HEnvironmentMarker::LOOKUP) {
133  live->Add(index);
134  } else {
135  ASSERT(marker->kind() == HEnvironmentMarker::BIND);
136  live->Remove(index);
137  went_live_since_last_simulate_.Add(index);
138  }
139  if (collect_markers_) {
140  // Populate |markers_| list during the first pass.
141  markers_.Add(marker, zone());
142  }
143  break;
144  }
145  case HValue::kLeaveInlined:
146  // No environment values are live at the end of an inlined section.
147  live->Clear();
148  last_simulate_ = NULL;
149 
150  // The following ASSERTs guard the assumption used in case
151  // kEnterInlined below:
152  ASSERT(instr->next()->IsSimulate());
153  ASSERT(instr->next()->next()->IsGoto());
154 
155  break;
156  case HValue::kEnterInlined: {
157  // Those environment values are live that are live at any return
158  // target block. Here we make use of the fact that the end of an
159  // inline sequence always looks like this: HLeaveInlined, HSimulate,
160  // HGoto (to return_target block), with no environment lookups in
161  // between (see ASSERTs above).
162  HEnterInlined* enter = HEnterInlined::cast(instr);
163  live->Clear();
164  for (int i = 0; i < enter->return_targets()->length(); ++i) {
165  int return_id = enter->return_targets()->at(i)->block_id();
166  live->Union(*live_at_block_start_[return_id]);
167  }
168  last_simulate_ = NULL;
169  break;
170  }
171  case HValue::kSimulate:
172  last_simulate_ = HSimulate::cast(instr);
173  went_live_since_last_simulate_.Clear();
174  break;
175  default:
176  break;
177  }
178 }
179 
180 
182  ASSERT(maximum_environment_size_ > 0);
183 
184  // Main iteration. Compute liveness of environment slots, and store it
185  // for each block until it doesn't change any more. For efficiency, visit
186  // blocks in reverse order and walk backwards through each block. We
187  // need several iterations to propagate liveness through nested loops.
188  BitVector live(maximum_environment_size_, zone());
189  BitVector worklist(block_count_, zone());
190  for (int i = 0; i < block_count_; ++i) {
191  worklist.Add(i);
192  }
193  while (!worklist.IsEmpty()) {
194  for (int block_id = block_count_ - 1; block_id >= 0; --block_id) {
195  if (!worklist.Contains(block_id)) {
196  continue;
197  }
198  worklist.Remove(block_id);
199  last_simulate_ = NULL;
200 
201  HBasicBlock* block = graph()->blocks()->at(block_id);
202  UpdateLivenessAtBlockEnd(block, &live);
203 
204  for (HInstruction* instr = block->end(); instr != NULL;
205  instr = instr->previous()) {
206  UpdateLivenessAtInstruction(instr, &live);
207  }
208 
209  // Reached the start of the block, do necessary bookkeeping:
210  // store computed information for this block and add predecessors
211  // to the work list as necessary.
212  first_simulate_.Set(block_id, last_simulate_);
213  first_simulate_invalid_for_index_[block_id]->CopyFrom(
214  went_live_since_last_simulate_);
215  if (live_at_block_start_[block_id]->UnionIsChanged(live)) {
216  for (int i = 0; i < block->predecessors()->length(); ++i) {
217  worklist.Add(block->predecessors()->at(i)->block_id());
218  }
219  if (block->IsInlineReturnTarget()) {
220  worklist.Add(block->inlined_entry_block()->block_id());
221  }
222  }
223  }
224  // Only collect bind/lookup instructions during the first pass.
225  collect_markers_ = false;
226  }
227 
228  // Analysis finished. Zap dead environment slots.
229  for (int i = 0; i < markers_.length(); ++i) {
230  ZapEnvironmentSlotsForInstruction(markers_[i]);
231  }
232  for (int block_id = block_count_ - 1; block_id >= 0; --block_id) {
233  HBasicBlock* block = graph()->blocks()->at(block_id);
234  UpdateLivenessAtBlockEnd(block, &live);
235  ZapEnvironmentSlotsInSuccessors(block, &live);
236  }
237 
238  // Finally, remove the HEnvironment{Bind,Lookup} markers.
239  for (int i = 0; i < markers_.length(); ++i) {
240  markers_[i]->DeleteAndReplaceWith(NULL);
241  }
242 }
243 
244 } } // namespace v8::internal
enable upcoming ES6 features enable harmony block scoping enable harmony enable harmony proxies enable harmony generators enable harmony numeric enable harmony string enable harmony math functions harmony_scoping harmony_symbols harmony_collections harmony_iteration harmony_strings harmony_scoping harmony_maths tracks arrays with only smi values Optimize object Array DOM strings and string pretenure call new trace pretenuring decisions of HAllocate instructions track fields with only smi values track fields with heap values track_fields track_fields Enables optimizations which favor memory size over execution speed use string slices optimization filter maximum number of GVN fix point iterations use function inlining use allocation folding eliminate write barriers targeting allocations in optimized code maximum source size in bytes considered for a single inlining maximum cumulative number of AST nodes considered for inlining crankshaft harvests type feedback from stub cache trace check elimination phase hydrogen tracing filter NULL
Definition: flags.cc:269
enable upcoming ES6 features enable harmony block scoping enable harmony enable harmony proxies enable harmony generators enable harmony numeric enable harmony string enable harmony math functions harmony_scoping harmony_symbols harmony_collections harmony_iteration harmony_strings harmony_scoping harmony_maths true
Definition: flags.cc:208
T & at(int i) const
Definition: list.h:90
#define ASSERT(condition)
Definition: checks.h:329
HGraph * graph() const
Definition: hydrogen.h:2695
bool Contains(int i) const
Definition: data-flow.h:122
bool IsEmpty() const
Definition: data-flow.h:176
void Set(int index, const T &element)
Definition: list-inl.h:107
void Add(const T &element, AllocationPolicy allocator=AllocationPolicy())
Definition: list-inl.h:39