v8  3.25.30(node0.11.13)
V8 is Google's open source JavaScript engine
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
bignum.cc
Go to the documentation of this file.
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "../include/v8stdint.h"
29 #include "utils.h"
30 #include "bignum.h"
31 
32 namespace v8 {
33 namespace internal {
34 
36  : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
37  for (int i = 0; i < kBigitCapacity; ++i) {
38  bigits_[i] = 0;
39  }
40 }
41 
42 
43 template<typename S>
44 static int BitSize(S value) {
45  return 8 * sizeof(value);
46 }
47 
48 
49 // Guaranteed to lie in one Bigit.
51  ASSERT(kBigitSize >= BitSize(value));
52  Zero();
53  if (value == 0) return;
54 
55  EnsureCapacity(1);
56  bigits_[0] = value;
57  used_digits_ = 1;
58 }
59 
60 
61 void Bignum::AssignUInt64(uint64_t value) {
62  const int kUInt64Size = 64;
63 
64  Zero();
65  if (value == 0) return;
66 
67  int needed_bigits = kUInt64Size / kBigitSize + 1;
68  EnsureCapacity(needed_bigits);
69  for (int i = 0; i < needed_bigits; ++i) {
70  bigits_[i] = static_cast<Chunk>(value & kBigitMask);
71  value = value >> kBigitSize;
72  }
73  used_digits_ = needed_bigits;
74  Clamp();
75 }
76 
77 
78 void Bignum::AssignBignum(const Bignum& other) {
79  exponent_ = other.exponent_;
80  for (int i = 0; i < other.used_digits_; ++i) {
81  bigits_[i] = other.bigits_[i];
82  }
83  // Clear the excess digits (if there were any).
84  for (int i = other.used_digits_; i < used_digits_; ++i) {
85  bigits_[i] = 0;
86  }
87  used_digits_ = other.used_digits_;
88 }
89 
90 
91 static uint64_t ReadUInt64(Vector<const char> buffer,
92  int from,
93  int digits_to_read) {
94  uint64_t result = 0;
95  for (int i = from; i < from + digits_to_read; ++i) {
96  int digit = buffer[i] - '0';
97  ASSERT(0 <= digit && digit <= 9);
98  result = result * 10 + digit;
99  }
100  return result;
101 }
102 
103 
105  // 2^64 = 18446744073709551616 > 10^19
106  const int kMaxUint64DecimalDigits = 19;
107  Zero();
108  int length = value.length();
109  int pos = 0;
110  // Let's just say that each digit needs 4 bits.
111  while (length >= kMaxUint64DecimalDigits) {
112  uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
113  pos += kMaxUint64DecimalDigits;
114  length -= kMaxUint64DecimalDigits;
115  MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
116  AddUInt64(digits);
117  }
118  uint64_t digits = ReadUInt64(value, pos, length);
119  MultiplyByPowerOfTen(length);
120  AddUInt64(digits);
121  Clamp();
122 }
123 
124 
125 static int HexCharValue(char c) {
126  if ('0' <= c && c <= '9') return c - '0';
127  if ('a' <= c && c <= 'f') return 10 + c - 'a';
128  if ('A' <= c && c <= 'F') return 10 + c - 'A';
129  UNREACHABLE();
130  return 0; // To make compiler happy.
131 }
132 
133 
135  Zero();
136  int length = value.length();
137 
138  int needed_bigits = length * 4 / kBigitSize + 1;
139  EnsureCapacity(needed_bigits);
140  int string_index = length - 1;
141  for (int i = 0; i < needed_bigits - 1; ++i) {
142  // These bigits are guaranteed to be "full".
143  Chunk current_bigit = 0;
144  for (int j = 0; j < kBigitSize / 4; j++) {
145  current_bigit += HexCharValue(value[string_index--]) << (j * 4);
146  }
147  bigits_[i] = current_bigit;
148  }
149  used_digits_ = needed_bigits - 1;
150 
151  Chunk most_significant_bigit = 0; // Could be = 0;
152  for (int j = 0; j <= string_index; ++j) {
153  most_significant_bigit <<= 4;
154  most_significant_bigit += HexCharValue(value[j]);
155  }
156  if (most_significant_bigit != 0) {
157  bigits_[used_digits_] = most_significant_bigit;
158  used_digits_++;
159  }
160  Clamp();
161 }
162 
163 
164 void Bignum::AddUInt64(uint64_t operand) {
165  if (operand == 0) return;
166  Bignum other;
167  other.AssignUInt64(operand);
168  AddBignum(other);
169 }
170 
171 
172 void Bignum::AddBignum(const Bignum& other) {
173  ASSERT(IsClamped());
174  ASSERT(other.IsClamped());
175 
176  // If this has a greater exponent than other append zero-bigits to this.
177  // After this call exponent_ <= other.exponent_.
178  Align(other);
179 
180  // There are two possibilities:
181  // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
182  // bbbbb 00000000
183  // ----------------
184  // ccccccccccc 0000
185  // or
186  // aaaaaaaaaa 0000
187  // bbbbbbbbb 0000000
188  // -----------------
189  // cccccccccccc 0000
190  // In both cases we might need a carry bigit.
191 
192  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
193  Chunk carry = 0;
194  int bigit_pos = other.exponent_ - exponent_;
195  ASSERT(bigit_pos >= 0);
196  for (int i = 0; i < other.used_digits_; ++i) {
197  Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
198  bigits_[bigit_pos] = sum & kBigitMask;
199  carry = sum >> kBigitSize;
200  bigit_pos++;
201  }
202 
203  while (carry != 0) {
204  Chunk sum = bigits_[bigit_pos] + carry;
205  bigits_[bigit_pos] = sum & kBigitMask;
206  carry = sum >> kBigitSize;
207  bigit_pos++;
208  }
209  used_digits_ = Max(bigit_pos, used_digits_);
210  ASSERT(IsClamped());
211 }
212 
213 
214 void Bignum::SubtractBignum(const Bignum& other) {
215  ASSERT(IsClamped());
216  ASSERT(other.IsClamped());
217  // We require this to be bigger than other.
218  ASSERT(LessEqual(other, *this));
219 
220  Align(other);
221 
222  int offset = other.exponent_ - exponent_;
223  Chunk borrow = 0;
224  int i;
225  for (i = 0; i < other.used_digits_; ++i) {
226  ASSERT((borrow == 0) || (borrow == 1));
227  Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
228  bigits_[i + offset] = difference & kBigitMask;
229  borrow = difference >> (kChunkSize - 1);
230  }
231  while (borrow != 0) {
232  Chunk difference = bigits_[i + offset] - borrow;
233  bigits_[i + offset] = difference & kBigitMask;
234  borrow = difference >> (kChunkSize - 1);
235  ++i;
236  }
237  Clamp();
238 }
239 
240 
241 void Bignum::ShiftLeft(int shift_amount) {
242  if (used_digits_ == 0) return;
243  exponent_ += shift_amount / kBigitSize;
244  int local_shift = shift_amount % kBigitSize;
245  EnsureCapacity(used_digits_ + 1);
246  BigitsShiftLeft(local_shift);
247 }
248 
249 
250 void Bignum::MultiplyByUInt32(uint32_t factor) {
251  if (factor == 1) return;
252  if (factor == 0) {
253  Zero();
254  return;
255  }
256  if (used_digits_ == 0) return;
257 
258  // The product of a bigit with the factor is of size kBigitSize + 32.
259  // Assert that this number + 1 (for the carry) fits into double chunk.
260  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
261  DoubleChunk carry = 0;
262  for (int i = 0; i < used_digits_; ++i) {
263  DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
264  bigits_[i] = static_cast<Chunk>(product & kBigitMask);
265  carry = (product >> kBigitSize);
266  }
267  while (carry != 0) {
268  EnsureCapacity(used_digits_ + 1);
269  bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
270  used_digits_++;
271  carry >>= kBigitSize;
272  }
273 }
274 
275 
276 void Bignum::MultiplyByUInt64(uint64_t factor) {
277  if (factor == 1) return;
278  if (factor == 0) {
279  Zero();
280  return;
281  }
282  ASSERT(kBigitSize < 32);
283  uint64_t carry = 0;
284  uint64_t low = factor & 0xFFFFFFFF;
285  uint64_t high = factor >> 32;
286  for (int i = 0; i < used_digits_; ++i) {
287  uint64_t product_low = low * bigits_[i];
288  uint64_t product_high = high * bigits_[i];
289  uint64_t tmp = (carry & kBigitMask) + product_low;
290  bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
291  carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
292  (product_high << (32 - kBigitSize));
293  }
294  while (carry != 0) {
295  EnsureCapacity(used_digits_ + 1);
296  bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
297  used_digits_++;
298  carry >>= kBigitSize;
299  }
300 }
301 
302 
303 void Bignum::MultiplyByPowerOfTen(int exponent) {
304  const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
305  const uint16_t kFive1 = 5;
306  const uint16_t kFive2 = kFive1 * 5;
307  const uint16_t kFive3 = kFive2 * 5;
308  const uint16_t kFive4 = kFive3 * 5;
309  const uint16_t kFive5 = kFive4 * 5;
310  const uint16_t kFive6 = kFive5 * 5;
311  const uint32_t kFive7 = kFive6 * 5;
312  const uint32_t kFive8 = kFive7 * 5;
313  const uint32_t kFive9 = kFive8 * 5;
314  const uint32_t kFive10 = kFive9 * 5;
315  const uint32_t kFive11 = kFive10 * 5;
316  const uint32_t kFive12 = kFive11 * 5;
317  const uint32_t kFive13 = kFive12 * 5;
318  const uint32_t kFive1_to_12[] =
319  { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
320  kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
321 
322  ASSERT(exponent >= 0);
323  if (exponent == 0) return;
324  if (used_digits_ == 0) return;
325 
326  // We shift by exponent at the end just before returning.
327  int remaining_exponent = exponent;
328  while (remaining_exponent >= 27) {
329  MultiplyByUInt64(kFive27);
330  remaining_exponent -= 27;
331  }
332  while (remaining_exponent >= 13) {
333  MultiplyByUInt32(kFive13);
334  remaining_exponent -= 13;
335  }
336  if (remaining_exponent > 0) {
337  MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
338  }
339  ShiftLeft(exponent);
340 }
341 
342 
344  ASSERT(IsClamped());
345  int product_length = 2 * used_digits_;
346  EnsureCapacity(product_length);
347 
348  // Comba multiplication: compute each column separately.
349  // Example: r = a2a1a0 * b2b1b0.
350  // r = 1 * a0b0 +
351  // 10 * (a1b0 + a0b1) +
352  // 100 * (a2b0 + a1b1 + a0b2) +
353  // 1000 * (a2b1 + a1b2) +
354  // 10000 * a2b2
355  //
356  // In the worst case we have to accumulate nb-digits products of digit*digit.
357  //
358  // Assert that the additional number of bits in a DoubleChunk are enough to
359  // sum up used_digits of Bigit*Bigit.
360  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
361  UNIMPLEMENTED();
362  }
363  DoubleChunk accumulator = 0;
364  // First shift the digits so we don't overwrite them.
365  int copy_offset = used_digits_;
366  for (int i = 0; i < used_digits_; ++i) {
367  bigits_[copy_offset + i] = bigits_[i];
368  }
369  // We have two loops to avoid some 'if's in the loop.
370  for (int i = 0; i < used_digits_; ++i) {
371  // Process temporary digit i with power i.
372  // The sum of the two indices must be equal to i.
373  int bigit_index1 = i;
374  int bigit_index2 = 0;
375  // Sum all of the sub-products.
376  while (bigit_index1 >= 0) {
377  Chunk chunk1 = bigits_[copy_offset + bigit_index1];
378  Chunk chunk2 = bigits_[copy_offset + bigit_index2];
379  accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
380  bigit_index1--;
381  bigit_index2++;
382  }
383  bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
384  accumulator >>= kBigitSize;
385  }
386  for (int i = used_digits_; i < product_length; ++i) {
387  int bigit_index1 = used_digits_ - 1;
388  int bigit_index2 = i - bigit_index1;
389  // Invariant: sum of both indices is again equal to i.
390  // Inner loop runs 0 times on last iteration, emptying accumulator.
391  while (bigit_index2 < used_digits_) {
392  Chunk chunk1 = bigits_[copy_offset + bigit_index1];
393  Chunk chunk2 = bigits_[copy_offset + bigit_index2];
394  accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
395  bigit_index1--;
396  bigit_index2++;
397  }
398  // The overwritten bigits_[i] will never be read in further loop iterations,
399  // because bigit_index1 and bigit_index2 are always greater
400  // than i - used_digits_.
401  bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
402  accumulator >>= kBigitSize;
403  }
404  // Since the result was guaranteed to lie inside the number the
405  // accumulator must be 0 now.
406  ASSERT(accumulator == 0);
407 
408  // Don't forget to update the used_digits and the exponent.
409  used_digits_ = product_length;
410  exponent_ *= 2;
411  Clamp();
412 }
413 
414 
415 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
416  ASSERT(base != 0);
417  ASSERT(power_exponent >= 0);
418  if (power_exponent == 0) {
419  AssignUInt16(1);
420  return;
421  }
422  Zero();
423  int shifts = 0;
424  // We expect base to be in range 2-32, and most often to be 10.
425  // It does not make much sense to implement different algorithms for counting
426  // the bits.
427  while ((base & 1) == 0) {
428  base >>= 1;
429  shifts++;
430  }
431  int bit_size = 0;
432  int tmp_base = base;
433  while (tmp_base != 0) {
434  tmp_base >>= 1;
435  bit_size++;
436  }
437  int final_size = bit_size * power_exponent;
438  // 1 extra bigit for the shifting, and one for rounded final_size.
439  EnsureCapacity(final_size / kBigitSize + 2);
440 
441  // Left to Right exponentiation.
442  int mask = 1;
443  while (power_exponent >= mask) mask <<= 1;
444 
445  // The mask is now pointing to the bit above the most significant 1-bit of
446  // power_exponent.
447  // Get rid of first 1-bit;
448  mask >>= 2;
449  uint64_t this_value = base;
450 
451  bool delayed_multipliciation = false;
452  const uint64_t max_32bits = 0xFFFFFFFF;
453  while (mask != 0 && this_value <= max_32bits) {
454  this_value = this_value * this_value;
455  // Verify that there is enough space in this_value to perform the
456  // multiplication. The first bit_size bits must be 0.
457  if ((power_exponent & mask) != 0) {
458  uint64_t base_bits_mask =
459  ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
460  bool high_bits_zero = (this_value & base_bits_mask) == 0;
461  if (high_bits_zero) {
462  this_value *= base;
463  } else {
464  delayed_multipliciation = true;
465  }
466  }
467  mask >>= 1;
468  }
469  AssignUInt64(this_value);
470  if (delayed_multipliciation) {
471  MultiplyByUInt32(base);
472  }
473 
474  // Now do the same thing as a bignum.
475  while (mask != 0) {
476  Square();
477  if ((power_exponent & mask) != 0) {
478  MultiplyByUInt32(base);
479  }
480  mask >>= 1;
481  }
482 
483  // And finally add the saved shifts.
484  ShiftLeft(shifts * power_exponent);
485 }
486 
487 
488 // Precondition: this/other < 16bit.
490  ASSERT(IsClamped());
491  ASSERT(other.IsClamped());
492  ASSERT(other.used_digits_ > 0);
493 
494  // Easy case: if we have less digits than the divisor than the result is 0.
495  // Note: this handles the case where this == 0, too.
496  if (BigitLength() < other.BigitLength()) {
497  return 0;
498  }
499 
500  Align(other);
501 
502  uint16_t result = 0;
503 
504  // Start by removing multiples of 'other' until both numbers have the same
505  // number of digits.
506  while (BigitLength() > other.BigitLength()) {
507  // This naive approach is extremely inefficient if the this divided other
508  // might be big. This function is implemented for doubleToString where
509  // the result should be small (less than 10).
510  ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
511  // Remove the multiples of the first digit.
512  // Example this = 23 and other equals 9. -> Remove 2 multiples.
513  result += bigits_[used_digits_ - 1];
514  SubtractTimes(other, bigits_[used_digits_ - 1]);
515  }
516 
517  ASSERT(BigitLength() == other.BigitLength());
518 
519  // Both bignums are at the same length now.
520  // Since other has more than 0 digits we know that the access to
521  // bigits_[used_digits_ - 1] is safe.
522  Chunk this_bigit = bigits_[used_digits_ - 1];
523  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
524 
525  if (other.used_digits_ == 1) {
526  // Shortcut for easy (and common) case.
527  int quotient = this_bigit / other_bigit;
528  bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
529  result += quotient;
530  Clamp();
531  return result;
532  }
533 
534  int division_estimate = this_bigit / (other_bigit + 1);
535  result += division_estimate;
536  SubtractTimes(other, division_estimate);
537 
538  if (other_bigit * (division_estimate + 1) > this_bigit) {
539  // No need to even try to subtract. Even if other's remaining digits were 0
540  // another subtraction would be too much.
541  return result;
542  }
543 
544  while (LessEqual(other, *this)) {
545  SubtractBignum(other);
546  result++;
547  }
548  return result;
549 }
550 
551 
552 template<typename S>
553 static int SizeInHexChars(S number) {
554  ASSERT(number > 0);
555  int result = 0;
556  while (number != 0) {
557  number >>= 4;
558  result++;
559  }
560  return result;
561 }
562 
563 
564 static char HexCharOfValue(int value) {
565  ASSERT(0 <= value && value <= 16);
566  if (value < 10) return value + '0';
567  return value - 10 + 'A';
568 }
569 
570 
571 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
572  ASSERT(IsClamped());
573  // Each bigit must be printable as separate hex-character.
574  ASSERT(kBigitSize % 4 == 0);
575  const int kHexCharsPerBigit = kBigitSize / 4;
576 
577  if (used_digits_ == 0) {
578  if (buffer_size < 2) return false;
579  buffer[0] = '0';
580  buffer[1] = '\0';
581  return true;
582  }
583  // We add 1 for the terminating '\0' character.
584  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
585  SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
586  if (needed_chars > buffer_size) return false;
587  int string_index = needed_chars - 1;
588  buffer[string_index--] = '\0';
589  for (int i = 0; i < exponent_; ++i) {
590  for (int j = 0; j < kHexCharsPerBigit; ++j) {
591  buffer[string_index--] = '0';
592  }
593  }
594  for (int i = 0; i < used_digits_ - 1; ++i) {
595  Chunk current_bigit = bigits_[i];
596  for (int j = 0; j < kHexCharsPerBigit; ++j) {
597  buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
598  current_bigit >>= 4;
599  }
600  }
601  // And finally the last bigit.
602  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
603  while (most_significant_bigit != 0) {
604  buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
605  most_significant_bigit >>= 4;
606  }
607  return true;
608 }
609 
610 
611 Bignum::Chunk Bignum::BigitAt(int index) const {
612  if (index >= BigitLength()) return 0;
613  if (index < exponent_) return 0;
614  return bigits_[index - exponent_];
615 }
616 
617 
618 int Bignum::Compare(const Bignum& a, const Bignum& b) {
619  ASSERT(a.IsClamped());
620  ASSERT(b.IsClamped());
621  int bigit_length_a = a.BigitLength();
622  int bigit_length_b = b.BigitLength();
623  if (bigit_length_a < bigit_length_b) return -1;
624  if (bigit_length_a > bigit_length_b) return +1;
625  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
626  Chunk bigit_a = a.BigitAt(i);
627  Chunk bigit_b = b.BigitAt(i);
628  if (bigit_a < bigit_b) return -1;
629  if (bigit_a > bigit_b) return +1;
630  // Otherwise they are equal up to this digit. Try the next digit.
631  }
632  return 0;
633 }
634 
635 
636 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
637  ASSERT(a.IsClamped());
638  ASSERT(b.IsClamped());
639  ASSERT(c.IsClamped());
640  if (a.BigitLength() < b.BigitLength()) {
641  return PlusCompare(b, a, c);
642  }
643  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
644  if (a.BigitLength() > c.BigitLength()) return +1;
645  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
646  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
647  // of 'a'.
648  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
649  return -1;
650  }
651 
652  Chunk borrow = 0;
653  // Starting at min_exponent all digits are == 0. So no need to compare them.
654  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
655  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
656  Chunk chunk_a = a.BigitAt(i);
657  Chunk chunk_b = b.BigitAt(i);
658  Chunk chunk_c = c.BigitAt(i);
659  Chunk sum = chunk_a + chunk_b;
660  if (sum > chunk_c + borrow) {
661  return +1;
662  } else {
663  borrow = chunk_c + borrow - sum;
664  if (borrow > 1) return -1;
665  borrow <<= kBigitSize;
666  }
667  }
668  if (borrow == 0) return 0;
669  return -1;
670 }
671 
672 
673 void Bignum::Clamp() {
674  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
675  used_digits_--;
676  }
677  if (used_digits_ == 0) {
678  // Zero.
679  exponent_ = 0;
680  }
681 }
682 
683 
684 bool Bignum::IsClamped() const {
685  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
686 }
687 
688 
689 void Bignum::Zero() {
690  for (int i = 0; i < used_digits_; ++i) {
691  bigits_[i] = 0;
692  }
693  used_digits_ = 0;
694  exponent_ = 0;
695 }
696 
697 
698 void Bignum::Align(const Bignum& other) {
699  if (exponent_ > other.exponent_) {
700  // If "X" represents a "hidden" digit (by the exponent) then we are in the
701  // following case (a == this, b == other):
702  // a: aaaaaaXXXX or a: aaaaaXXX
703  // b: bbbbbbX b: bbbbbbbbXX
704  // We replace some of the hidden digits (X) of a with 0 digits.
705  // a: aaaaaa000X or a: aaaaa0XX
706  int zero_digits = exponent_ - other.exponent_;
707  EnsureCapacity(used_digits_ + zero_digits);
708  for (int i = used_digits_ - 1; i >= 0; --i) {
709  bigits_[i + zero_digits] = bigits_[i];
710  }
711  for (int i = 0; i < zero_digits; ++i) {
712  bigits_[i] = 0;
713  }
714  used_digits_ += zero_digits;
715  exponent_ -= zero_digits;
716  ASSERT(used_digits_ >= 0);
717  ASSERT(exponent_ >= 0);
718  }
719 }
720 
721 
722 void Bignum::BigitsShiftLeft(int shift_amount) {
723  ASSERT(shift_amount < kBigitSize);
724  ASSERT(shift_amount >= 0);
725  Chunk carry = 0;
726  for (int i = 0; i < used_digits_; ++i) {
727  Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
728  bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
729  carry = new_carry;
730  }
731  if (carry != 0) {
732  bigits_[used_digits_] = carry;
733  used_digits_++;
734  }
735 }
736 
737 
738 void Bignum::SubtractTimes(const Bignum& other, int factor) {
739 #ifdef DEBUG
740  Bignum a, b;
741  a.AssignBignum(*this);
742  b.AssignBignum(other);
743  b.MultiplyByUInt32(factor);
744  a.SubtractBignum(b);
745 #endif
746  ASSERT(exponent_ <= other.exponent_);
747  if (factor < 3) {
748  for (int i = 0; i < factor; ++i) {
749  SubtractBignum(other);
750  }
751  return;
752  }
753  Chunk borrow = 0;
754  int exponent_diff = other.exponent_ - exponent_;
755  for (int i = 0; i < other.used_digits_; ++i) {
756  DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
757  DoubleChunk remove = borrow + product;
758  Chunk difference =
759  bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
760  bigits_[i + exponent_diff] = difference & kBigitMask;
761  borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
762  (remove >> kBigitSize));
763  }
764  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
765  if (borrow == 0) return;
766  Chunk difference = bigits_[i] - borrow;
767  bigits_[i] = difference & kBigitMask;
768  borrow = difference >> (kChunkSize - 1);
769  }
770  Clamp();
771  ASSERT(Bignum::Equal(a, *this));
772 }
773 
774 
775 } } // namespace v8::internal
void AssignBignum(const Bignum &other)
Definition: bignum.cc:78
void MultiplyByUInt64(uint64_t factor)
Definition: bignum.cc:276
T Max(T a, T b)
Definition: utils.h:227
#define ASSERT(condition)
Definition: checks.h:329
void AssignUInt64(uint64_t value)
Definition: bignum.cc:61
void AddBignum(const Bignum &other)
Definition: bignum.cc:172
unsigned short uint16_t
Definition: unicode.cc:46
void AddUInt64(uint64_t operand)
Definition: bignum.cc:164
static int Compare(const Bignum &a, const Bignum &b)
Definition: bignum.cc:618
void AssignHexString(Vector< const char > value)
Definition: bignum.cc:134
#define UNREACHABLE()
Definition: checks.h:52
static int PlusCompare(const Bignum &a, const Bignum &b, const Bignum &c)
Definition: bignum.cc:636
static bool Equal(const Bignum &a, const Bignum &b)
Definition: bignum.h:72
void AssignPowerUInt16(uint16_t base, int exponent)
Definition: bignum.cc:415
void ShiftLeft(int shift_amount)
Definition: bignum.cc:241
uint16_t DivideModuloIntBignum(const Bignum &other)
Definition: bignum.cc:489
int length() const
Definition: utils.h:420
void MultiplyByUInt32(uint32_t factor)
Definition: bignum.cc:250
#define V8_2PART_UINT64_C(a, b)
Definition: globals.h:226
void AssignUInt16(uint16_t value)
Definition: bignum.cc:50
void SubtractBignum(const Bignum &other)
Definition: bignum.cc:214
bool ToHexString(char *buffer, int buffer_size) const
Definition: bignum.cc:571
#define UNIMPLEMENTED()
Definition: checks.h:50
static bool LessEqual(const Bignum &a, const Bignum &b)
Definition: bignum.h:75
void AssignDecimalString(Vector< const char > value)
Definition: bignum.cc:104
T Min(T a, T b)
Definition: utils.h:234
void MultiplyByPowerOfTen(int exponent)
Definition: bignum.cc:303