28 #include "../include/v8stdint.h"
47 static const int kMinimalTargetExponent = -60;
48 static const int kMaximalTargetExponent = -32;
66 static bool RoundWeed(Vector<char> buffer,
68 uint64_t distance_too_high_w,
69 uint64_t unsafe_interval,
73 uint64_t small_distance = distance_too_high_w - unit;
74 uint64_t big_distance = distance_too_high_w + unit;
146 ASSERT(rest <= unsafe_interval);
147 while (rest < small_distance &&
148 unsafe_interval - rest >= ten_kappa &&
149 (rest + ten_kappa < small_distance ||
150 small_distance - rest >= rest + ten_kappa - small_distance)) {
151 buffer[length - 1]--;
158 if (rest < big_distance &&
159 unsafe_interval - rest >= ten_kappa &&
160 (rest + ten_kappa < big_distance ||
161 big_distance - rest > rest + ten_kappa - big_distance)) {
170 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
186 static bool RoundWeedCounted(Vector<char> buffer,
199 if (unit >= ten_kappa)
return false;
203 if (ten_kappa - unit <= unit)
return false;
205 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
209 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
211 buffer[length - 1]++;
212 for (
int i = length - 1; i > 0; --i) {
213 if (buffer[i] !=
'0' + 10)
break;
221 if (buffer[0] ==
'0' + 10) {
231 static const uint32_t kTen4 = 10000;
232 static const uint32_t kTen5 = 100000;
233 static const uint32_t kTen6 = 1000000;
234 static const uint32_t kTen7 = 10000000;
235 static const uint32_t kTen8 = 100000000;
236 static const uint32_t kTen9 = 1000000000;
243 static void BiggestPowerTen(uint32_t number,
247 switch (number_bits) {
251 if (kTen9 <= number) {
259 if (kTen8 <= number) {
267 if (kTen7 <= number) {
276 if (kTen6 <= number) {
284 if (kTen5 <= number) {
292 if (kTen4 <= number) {
301 if (1000 <= number) {
385 static bool DigitGen(DiyFp low,
391 ASSERT(low.e() == w.e() && w.e() == high.e());
392 ASSERT(low.f() + 1 <= high.f() - 1);
393 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
406 DiyFp too_low = DiyFp(low.f() - unit, low.e());
407 DiyFp too_high = DiyFp(high.f() + unit, high.e());
410 DiyFp unsafe_interval =
DiyFp::Minus(too_high, too_low);
418 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
420 uint32_t integrals =
static_cast<uint32_t
>(too_high.f() >> -one.e());
422 uint64_t fractionals = too_high.f() & (one.f() - 1);
424 int divisor_exponent;
426 &divisor, &divisor_exponent);
427 *kappa = divisor_exponent + 1;
434 int digit = integrals / divisor;
435 buffer[*length] =
'0' + digit;
437 integrals %= divisor;
442 (
static_cast<uint64_t
>(integrals) << -one.e()) + fractionals;
445 if (rest < unsafe_interval.f()) {
448 return RoundWeed(buffer, *length,
DiyFp::Minus(too_high, w).f(),
449 unsafe_interval.
f(), rest,
450 static_cast<uint64_t
>(divisor) << -one.e(), unit);
462 ASSERT(fractionals < one.f());
467 unsafe_interval.set_f(unsafe_interval.f() * 10);
469 int digit =
static_cast<int>(fractionals >> -one.e());
470 buffer[*length] =
'0' + digit;
472 fractionals &= one.f() - 1;
474 if (fractionals < unsafe_interval.f()) {
475 return RoundWeed(buffer, *length,
DiyFp::Minus(too_high, w).f() * unit,
476 unsafe_interval.
f(), fractionals, one.f(), unit);
511 static bool DigitGenCounted(DiyFp w,
512 int requested_digits,
516 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
517 ASSERT(kMinimalTargetExponent >= -60);
518 ASSERT(kMaximalTargetExponent <= -32);
521 uint64_t w_error = 1;
526 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
528 uint32_t integrals =
static_cast<uint32_t
>(w.f() >> -one.e());
530 uint64_t fractionals = w.f() & (one.f() - 1);
532 int divisor_exponent;
534 &divisor, &divisor_exponent);
535 *kappa = divisor_exponent + 1;
543 int digit = integrals / divisor;
544 buffer[*length] =
'0' + digit;
547 integrals %= divisor;
551 if (requested_digits == 0)
break;
555 if (requested_digits == 0) {
557 (
static_cast<uint64_t
>(integrals) << -one.e()) + fractionals;
558 return RoundWeedCounted(buffer, *length, rest,
559 static_cast<uint64_t>(divisor) << -one.e(), w_error,
570 ASSERT(fractionals < one.f());
572 while (requested_digits > 0 && fractionals > w_error) {
576 int digit =
static_cast<int>(fractionals >> -one.e());
577 buffer[*length] =
'0' + digit;
580 fractionals &= one.f() - 1;
583 if (requested_digits != 0)
return false;
584 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
600 static bool Grisu3(
double v,
603 int* decimal_exponent) {
604 DiyFp w = Double(v).AsNormalizedDiyFp();
609 DiyFp boundary_minus, boundary_plus;
610 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
611 ASSERT(boundary_plus.e() == w.e());
614 int ten_mk_minimal_binary_exponent =
616 int ten_mk_maximal_binary_exponent =
619 ten_mk_minimal_binary_exponent,
620 ten_mk_maximal_binary_exponent,
622 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
624 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
643 DiyFp scaled_boundary_minus =
DiyFp::Times(boundary_minus, ten_mk);
644 DiyFp scaled_boundary_plus =
DiyFp::Times(boundary_plus, ten_mk);
653 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
654 buffer, length, &kappa);
655 *decimal_exponent = -mk + kappa;
665 static bool Grisu3Counted(
double v,
666 int requested_digits,
669 int* decimal_exponent) {
670 DiyFp w = Double(v).AsNormalizedDiyFp();
673 int ten_mk_minimal_binary_exponent =
675 int ten_mk_maximal_binary_exponent =
678 ten_mk_minimal_binary_exponent,
679 ten_mk_maximal_binary_exponent,
681 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
683 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
702 bool result = DigitGenCounted(scaled_w, requested_digits,
703 buffer, length, &kappa);
704 *decimal_exponent = -mk + kappa;
711 int requested_digits,
714 int* decimal_point) {
719 int decimal_exponent = 0;
722 result = Grisu3(v, buffer, length, &decimal_exponent);
725 result = Grisu3Counted(v, requested_digits,
726 buffer, length, &decimal_exponent);
732 *decimal_point = *length + decimal_exponent;
733 buffer[*length] =
'\0';
static DiyFp Minus(const DiyFp &a, const DiyFp &b)
static const int kSignificandSize
#define ASSERT(condition)
enable upcoming ES6 features enable harmony block scoping enable harmony enable harmony proxies enable harmony generators enable harmony numeric enable harmony string enable harmony math functions harmony_scoping harmony_symbols harmony_collections harmony_iteration harmony_strings harmony_scoping harmony_maths tracks arrays with only smi values Optimize object Array DOM strings and string pretenure call new trace pretenuring decisions of HAllocate instructions track fields with only smi values track fields with heap values track_fields track_fields Enables optimizations which favor memory size over execution speed use string slices optimization filter maximum number of GVN fix point iterations use function inlining use allocation folding eliminate write barriers targeting allocations in optimized code maximum source size in bytes considered for a single inlining maximum cumulative number of AST nodes considered for inlining crankshaft harvests type feedback from stub cache trace check elimination phase hydrogen tracing filter trace hydrogen to given file name trace inlining decisions trace store elimination trace all use positions trace global value numbering trace hydrogen escape analysis trace the tracking of allocation sites trace map generalization environment for every instruction deoptimize every n garbage collections put a break point before deoptimizing deoptimize uncommon cases use on stack replacement trace array bounds check elimination perform array index dehoisting use load elimination use store elimination use constant folding eliminate unreachable code number of stress runs when picking a function to watch for shared function not JSFunction itself flushes the cache of optimized code for closures on every GC functions with arguments object maximum number of escape analysis fix point iterations allow uint32 values on optimize frames if they are used only in safe operations track concurrent recompilation artificial compilation delay in ms concurrent on stack replacement do not emit check maps for constant values that have a leaf deoptimize the optimized code if the layout of the maps changes number of stack frames inspected by the profiler percentage of ICs that must have type info to allow optimization extra verbose compilation tracing generate extra emit comments in code disassembly enable use of SSE3 instructions if available enable use of CMOV instruction if available enable use of VFP3 instructions if available enable use of NEON instructions if enable use of SDIV and UDIV instructions if enable loading bit constant by means of movw movt instruction enable unaligned accesses for enable use of d16 d31 registers on ARM this requires VFP3 force all emitted branches to be in long mode(MIPS only)") DEFINE_string(expose_natives_as
bool FastDtoa(double v, FastDtoaMode mode, int requested_digits, Vector< char > buffer, int *length, int *decimal_point)
#define V8_2PART_UINT64_C(a, b)
static DiyFp Times(const DiyFp &a, const DiyFp &b)
static void GetCachedPowerForBinaryExponentRange(int min_exponent, int max_exponent, DiyFp *power, int *decimal_exponent)