v8  3.11.10(node0.8.26)
V8 is Google's open source JavaScript engine
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
macro-assembler-x64.h
Go to the documentation of this file.
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
29 #define V8_X64_MACRO_ASSEMBLER_X64_H_
30 
31 #include "assembler.h"
32 #include "frames.h"
33 #include "v8globals.h"
34 
35 namespace v8 {
36 namespace internal {
37 
38 // Flags used for the AllocateInNewSpace functions.
40  // No special flags.
42  // Return the pointer to the allocated already tagged as a heap object.
43  TAG_OBJECT = 1 << 0,
44  // The content of the result register already contains the allocation top in
45  // new space.
46  RESULT_CONTAINS_TOP = 1 << 1
47 };
48 
49 
50 // Default scratch register used by MacroAssembler (and other code that needs
51 // a spare register). The register isn't callee save, and not used by the
52 // function calling convention.
53 const Register kScratchRegister = { 10 }; // r10.
54 const Register kSmiConstantRegister = { 12 }; // r12 (callee save).
55 const Register kRootRegister = { 13 }; // r13 (callee save).
56 // Value of smi in kSmiConstantRegister.
58 // Actual value of root register is offset from the root array's start
59 // to take advantage of negitive 8-bit displacement values.
60 const int kRootRegisterBias = 128;
61 
62 // Convenience for platform-independent signatures.
63 typedef Operand MemOperand;
64 
67 
68 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
69 
70 // Forward declaration.
71 class JumpTarget;
72 
73 struct SmiIndex {
75  : reg(index_register),
76  scale(scale) {}
79 };
80 
81 
82 // MacroAssembler implements a collection of frequently used macros.
83 class MacroAssembler: public Assembler {
84  public:
85  // The isolate parameter can be NULL if the macro assembler should
86  // not use isolate-dependent functionality. In this case, it's the
87  // responsibility of the caller to never invoke such function on the
88  // macro assembler.
89  MacroAssembler(Isolate* isolate, void* buffer, int size);
90 
91  // Prevent the use of the RootArray during the lifetime of this
92  // scope object.
93  class NoRootArrayScope BASE_EMBEDDED {
94  public:
95  explicit NoRootArrayScope(MacroAssembler* assembler)
96  : variable_(&assembler->root_array_available_),
97  old_value_(assembler->root_array_available_) {
98  assembler->root_array_available_ = false;
99  }
101  *variable_ = old_value_;
102  }
103  private:
104  bool* variable_;
105  bool old_value_;
106  };
107 
108  // Operand pointing to an external reference.
109  // May emit code to set up the scratch register. The operand is
110  // only guaranteed to be correct as long as the scratch register
111  // isn't changed.
112  // If the operand is used more than once, use a scratch register
113  // that is guaranteed not to be clobbered.
114  Operand ExternalOperand(ExternalReference reference,
115  Register scratch = kScratchRegister);
116  // Loads and stores the value of an external reference.
117  // Special case code for load and store to take advantage of
118  // load_rax/store_rax if possible/necessary.
119  // For other operations, just use:
120  // Operand operand = ExternalOperand(extref);
121  // operation(operand, ..);
122  void Load(Register destination, ExternalReference source);
123  void Store(ExternalReference destination, Register source);
124  // Loads the address of the external reference into the destination
125  // register.
126  void LoadAddress(Register destination, ExternalReference source);
127  // Returns the size of the code generated by LoadAddress.
128  // Used by CallSize(ExternalReference) to find the size of a call.
129  int LoadAddressSize(ExternalReference source);
130  // Pushes the address of the external reference onto the stack.
131  void PushAddress(ExternalReference source);
132 
133  // Operations on roots in the root-array.
134  void LoadRoot(Register destination, Heap::RootListIndex index);
135  void StoreRoot(Register source, Heap::RootListIndex index);
136  // Load a root value where the index (or part of it) is variable.
137  // The variable_offset register is added to the fixed_offset value
138  // to get the index into the root-array.
139  void LoadRootIndexed(Register destination,
140  Register variable_offset,
141  int fixed_offset);
142  void CompareRoot(Register with, Heap::RootListIndex index);
143  void CompareRoot(const Operand& with, Heap::RootListIndex index);
144  void PushRoot(Heap::RootListIndex index);
145 
146  // These functions do not arrange the registers in any particular order so
147  // they are not useful for calls that can cause a GC. The caller can
148  // exclude up to 3 registers that do not need to be saved and restored.
149  void PushCallerSaved(SaveFPRegsMode fp_mode,
150  Register exclusion1 = no_reg,
151  Register exclusion2 = no_reg,
152  Register exclusion3 = no_reg);
153  void PopCallerSaved(SaveFPRegsMode fp_mode,
154  Register exclusion1 = no_reg,
155  Register exclusion2 = no_reg,
156  Register exclusion3 = no_reg);
157 
158 // ---------------------------------------------------------------------------
159 // GC Support
160 
161 
163  kReturnAtEnd,
165  };
166 
167  // Record in the remembered set the fact that we have a pointer to new space
168  // at the address pointed to by the addr register. Only works if addr is not
169  // in new space.
170  void RememberedSetHelper(Register object, // Used for debug code.
171  Register addr,
172  Register scratch,
173  SaveFPRegsMode save_fp,
174  RememberedSetFinalAction and_then);
175 
176  void CheckPageFlag(Register object,
177  Register scratch,
178  int mask,
179  Condition cc,
180  Label* condition_met,
181  Label::Distance condition_met_distance = Label::kFar);
182 
183  // Check if object is in new space. Jumps if the object is not in new space.
184  // The register scratch can be object itself, but scratch will be clobbered.
186  Register scratch,
187  Label* branch,
188  Label::Distance distance = Label::kFar) {
189  InNewSpace(object, scratch, not_equal, branch, distance);
190  }
191 
192  // Check if object is in new space. Jumps if the object is in new space.
193  // The register scratch can be object itself, but it will be clobbered.
195  Register scratch,
196  Label* branch,
197  Label::Distance distance = Label::kFar) {
198  InNewSpace(object, scratch, equal, branch, distance);
199  }
200 
201  // Check if an object has the black incremental marking color. Also uses rcx!
202  void JumpIfBlack(Register object,
203  Register scratch0,
204  Register scratch1,
205  Label* on_black,
206  Label::Distance on_black_distance = Label::kFar);
207 
208  // Detects conservatively whether an object is data-only, i.e. it does need to
209  // be scanned by the garbage collector.
210  void JumpIfDataObject(Register value,
211  Register scratch,
212  Label* not_data_object,
213  Label::Distance not_data_object_distance);
214 
215  // Checks the color of an object. If the object is already grey or black
216  // then we just fall through, since it is already live. If it is white and
217  // we can determine that it doesn't need to be scanned, then we just mark it
218  // black and fall through. For the rest we jump to the label so the
219  // incremental marker can fix its assumptions.
220  void EnsureNotWhite(Register object,
221  Register scratch1,
222  Register scratch2,
223  Label* object_is_white_and_not_data,
224  Label::Distance distance);
225 
226  // Notify the garbage collector that we wrote a pointer into an object.
227  // |object| is the object being stored into, |value| is the object being
228  // stored. value and scratch registers are clobbered by the operation.
229  // The offset is the offset from the start of the object, not the offset from
230  // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
231  void RecordWriteField(
232  Register object,
233  int offset,
234  Register value,
235  Register scratch,
236  SaveFPRegsMode save_fp,
237  RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
238  SmiCheck smi_check = INLINE_SMI_CHECK);
239 
240  // As above, but the offset has the tag presubtracted. For use with
241  // Operand(reg, off).
243  Register context,
244  int offset,
245  Register value,
246  Register scratch,
247  SaveFPRegsMode save_fp,
248  RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
249  SmiCheck smi_check = INLINE_SMI_CHECK) {
250  RecordWriteField(context,
251  offset + kHeapObjectTag,
252  value,
253  scratch,
254  save_fp,
255  remembered_set_action,
256  smi_check);
257  }
258 
259  // Notify the garbage collector that we wrote a pointer into a fixed array.
260  // |array| is the array being stored into, |value| is the
261  // object being stored. |index| is the array index represented as a non-smi.
262  // All registers are clobbered by the operation RecordWriteArray
263  // filters out smis so it does not update the write barrier if the
264  // value is a smi.
265  void RecordWriteArray(
266  Register array,
267  Register value,
268  Register index,
269  SaveFPRegsMode save_fp,
270  RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
271  SmiCheck smi_check = INLINE_SMI_CHECK);
272 
273  // For page containing |object| mark region covering |address|
274  // dirty. |object| is the object being stored into, |value| is the
275  // object being stored. The address and value registers are clobbered by the
276  // operation. RecordWrite filters out smis so it does not update
277  // the write barrier if the value is a smi.
278  void RecordWrite(
279  Register object,
280  Register address,
281  Register value,
282  SaveFPRegsMode save_fp,
283  RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
284  SmiCheck smi_check = INLINE_SMI_CHECK);
285 
286 #ifdef ENABLE_DEBUGGER_SUPPORT
287  // ---------------------------------------------------------------------------
288  // Debugger Support
289 
290  void DebugBreak();
291 #endif
292 
293  // Enter specific kind of exit frame; either in normal or
294  // debug mode. Expects the number of arguments in register rax and
295  // sets up the number of arguments in register rdi and the pointer
296  // to the first argument in register rsi.
297  //
298  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
299  // accessible via StackSpaceOperand.
300  void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
301 
302  // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
303  // memory (not GCed) on the stack accessible via StackSpaceOperand.
304  void EnterApiExitFrame(int arg_stack_space);
305 
306  // Leave the current exit frame. Expects/provides the return value in
307  // register rax:rdx (untouched) and the pointer to the first
308  // argument in register rsi.
309  void LeaveExitFrame(bool save_doubles = false);
310 
311  // Leave the current exit frame. Expects/provides the return value in
312  // register rax (untouched).
313  void LeaveApiExitFrame();
314 
315  // Push and pop the registers that can hold pointers.
318  // Store the value in register src in the safepoint register stack
319  // slot for register dst.
322 
324  ExternalReference roots_array_start =
325  ExternalReference::roots_array_start(isolate());
326  movq(kRootRegister, roots_array_start);
327  addq(kRootRegister, Immediate(kRootRegisterBias));
328  }
329 
330  // ---------------------------------------------------------------------------
331  // JavaScript invokes
332 
333  // Set up call kind marking in rcx. The method takes rcx as an
334  // explicit first parameter to make the code more readable at the
335  // call sites.
336  void SetCallKind(Register dst, CallKind kind);
337 
338  // Invoke the JavaScript function code by either calling or jumping.
339  void InvokeCode(Register code,
340  const ParameterCount& expected,
341  const ParameterCount& actual,
343  const CallWrapper& call_wrapper,
344  CallKind call_kind);
345 
346  void InvokeCode(Handle<Code> code,
347  const ParameterCount& expected,
348  const ParameterCount& actual,
349  RelocInfo::Mode rmode,
351  const CallWrapper& call_wrapper,
352  CallKind call_kind);
353 
354  // Invoke the JavaScript function in the given register. Changes the
355  // current context to the context in the function before invoking.
356  void InvokeFunction(Register function,
357  const ParameterCount& actual,
359  const CallWrapper& call_wrapper,
360  CallKind call_kind);
361 
362  void InvokeFunction(Handle<JSFunction> function,
363  const ParameterCount& actual,
365  const CallWrapper& call_wrapper,
366  CallKind call_kind);
367 
368  // Invoke specified builtin JavaScript function. Adds an entry to
369  // the unresolved list if the name does not resolve.
372  const CallWrapper& call_wrapper = NullCallWrapper());
373 
374  // Store the function for the given builtin in the target register.
376 
377  // Store the code object for the given builtin in the target register.
379 
380 
381  // ---------------------------------------------------------------------------
382  // Smi tagging, untagging and operations on tagged smis.
383 
386  reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
388  }
389 
390  // Conversions between tagged smi values and non-tagged integer values.
391 
392  // Tag an integer value. The result must be known to be a valid smi value.
393  // Only uses the low 32 bits of the src register. Sets the N and Z flags
394  // based on the value of the resulting smi.
395  void Integer32ToSmi(Register dst, Register src);
396 
397  // Stores an integer32 value into a memory field that already holds a smi.
398  void Integer32ToSmiField(const Operand& dst, Register src);
399 
400  // Adds constant to src and tags the result as a smi.
401  // Result must be a valid smi.
402  void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
403 
404  // Convert smi to 32-bit integer. I.e., not sign extended into
405  // high 32 bits of destination.
406  void SmiToInteger32(Register dst, Register src);
407  void SmiToInteger32(Register dst, const Operand& src);
408 
409  // Convert smi to 64-bit integer (sign extended if necessary).
410  void SmiToInteger64(Register dst, Register src);
411  void SmiToInteger64(Register dst, const Operand& src);
412 
413  // Multiply a positive smi's integer value by a power of two.
414  // Provides result as 64-bit integer value.
416  Register src,
417  int power);
418 
419  // Divide a positive smi's integer value by a power of two.
420  // Provides result as 32-bit integer value.
422  Register src,
423  int power);
424 
425  // Perform the logical or of two smi values and return a smi value.
426  // If either argument is not a smi, jump to on_not_smis and retain
427  // the original values of source registers. The destination register
428  // may be changed if it's not one of the source registers.
429  void SmiOrIfSmis(Register dst,
430  Register src1,
431  Register src2,
432  Label* on_not_smis,
433  Label::Distance near_jump = Label::kFar);
434 
435 
436  // Simple comparison of smis. Both sides must be known smis to use these,
437  // otherwise use Cmp.
438  void SmiCompare(Register smi1, Register smi2);
439  void SmiCompare(Register dst, Smi* src);
440  void SmiCompare(Register dst, const Operand& src);
441  void SmiCompare(const Operand& dst, Register src);
442  void SmiCompare(const Operand& dst, Smi* src);
443  // Compare the int32 in src register to the value of the smi stored at dst.
444  void SmiCompareInteger32(const Operand& dst, Register src);
445  // Sets sign and zero flags depending on value of smi in register.
446  void SmiTest(Register src);
447 
448  // Functions performing a check on a known or potential smi. Returns
449  // a condition that is satisfied if the check is successful.
450 
451  // Is the value a tagged smi.
453  Condition CheckSmi(const Operand& src);
454 
455  // Is the value a non-negative tagged smi.
457 
458  // Are both values tagged smis.
459  Condition CheckBothSmi(Register first, Register second);
460 
461  // Are both values non-negative tagged smis.
463 
464  // Are either value a tagged smi.
466  Register second,
467  Register scratch = kScratchRegister);
468 
469  // Is the value the minimum smi value (since we are using
470  // two's complement numbers, negating the value is known to yield
471  // a non-smi value).
473 
474  // Checks whether an 32-bit integer value is a valid for conversion
475  // to a smi.
477 
478  // Checks whether an 32-bit unsigned integer value is a valid for
479  // conversion to a smi.
481 
482  // Check whether src is a Smi, and set dst to zero if it is a smi,
483  // and to one if it isn't.
484  void CheckSmiToIndicator(Register dst, Register src);
485  void CheckSmiToIndicator(Register dst, const Operand& src);
486 
487  // Test-and-jump functions. Typically combines a check function
488  // above with a conditional jump.
489 
490  // Jump if the value cannot be represented by a smi.
491  void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
492  Label::Distance near_jump = Label::kFar);
493 
494  // Jump if the unsigned integer value cannot be represented by a smi.
495  void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
496  Label::Distance near_jump = Label::kFar);
497 
498  // Jump to label if the value is a tagged smi.
499  void JumpIfSmi(Register src,
500  Label* on_smi,
501  Label::Distance near_jump = Label::kFar);
502 
503  // Jump to label if the value is not a tagged smi.
504  void JumpIfNotSmi(Register src,
505  Label* on_not_smi,
506  Label::Distance near_jump = Label::kFar);
507 
508  // Jump to label if the value is not a non-negative tagged smi.
510  Label* on_not_smi,
511  Label::Distance near_jump = Label::kFar);
512 
513  // Jump to label if the value, which must be a tagged smi, has value equal
514  // to the constant.
516  Smi* constant,
517  Label* on_equals,
518  Label::Distance near_jump = Label::kFar);
519 
520  // Jump if either or both register are not smi values.
521  void JumpIfNotBothSmi(Register src1,
522  Register src2,
523  Label* on_not_both_smi,
524  Label::Distance near_jump = Label::kFar);
525 
526  // Jump if either or both register are not non-negative smi values.
528  Label* on_not_both_smi,
529  Label::Distance near_jump = Label::kFar);
530 
531  // Operations on tagged smi values.
532 
533  // Smis represent a subset of integers. The subset is always equivalent to
534  // a two's complement interpretation of a fixed number of bits.
535 
536  // Optimistically adds an integer constant to a supposed smi.
537  // If the src is not a smi, or the result is not a smi, jump to
538  // the label.
539  void SmiTryAddConstant(Register dst,
540  Register src,
541  Smi* constant,
542  Label* on_not_smi_result,
543  Label::Distance near_jump = Label::kFar);
544 
545  // Add an integer constant to a tagged smi, giving a tagged smi as result.
546  // No overflow testing on the result is done.
547  void SmiAddConstant(Register dst, Register src, Smi* constant);
548 
549  // Add an integer constant to a tagged smi, giving a tagged smi as result.
550  // No overflow testing on the result is done.
551  void SmiAddConstant(const Operand& dst, Smi* constant);
552 
553  // Add an integer constant to a tagged smi, giving a tagged smi as result,
554  // or jumping to a label if the result cannot be represented by a smi.
555  void SmiAddConstant(Register dst,
556  Register src,
557  Smi* constant,
558  Label* on_not_smi_result,
559  Label::Distance near_jump = Label::kFar);
560 
561  // Subtract an integer constant from a tagged smi, giving a tagged smi as
562  // result. No testing on the result is done. Sets the N and Z flags
563  // based on the value of the resulting integer.
564  void SmiSubConstant(Register dst, Register src, Smi* constant);
565 
566  // Subtract an integer constant from a tagged smi, giving a tagged smi as
567  // result, or jumping to a label if the result cannot be represented by a smi.
568  void SmiSubConstant(Register dst,
569  Register src,
570  Smi* constant,
571  Label* on_not_smi_result,
572  Label::Distance near_jump = Label::kFar);
573 
574  // Negating a smi can give a negative zero or too large positive value.
575  // NOTICE: This operation jumps on success, not failure!
576  void SmiNeg(Register dst,
577  Register src,
578  Label* on_smi_result,
579  Label::Distance near_jump = Label::kFar);
580 
581  // Adds smi values and return the result as a smi.
582  // If dst is src1, then src1 will be destroyed, even if
583  // the operation is unsuccessful.
584  void SmiAdd(Register dst,
585  Register src1,
586  Register src2,
587  Label* on_not_smi_result,
588  Label::Distance near_jump = Label::kFar);
589  void SmiAdd(Register dst,
590  Register src1,
591  const Operand& src2,
592  Label* on_not_smi_result,
593  Label::Distance near_jump = Label::kFar);
594 
595  void SmiAdd(Register dst,
596  Register src1,
597  Register src2);
598 
599  // Subtracts smi values and return the result as a smi.
600  // If dst is src1, then src1 will be destroyed, even if
601  // the operation is unsuccessful.
602  void SmiSub(Register dst,
603  Register src1,
604  Register src2,
605  Label* on_not_smi_result,
606  Label::Distance near_jump = Label::kFar);
607 
608  void SmiSub(Register dst,
609  Register src1,
610  Register src2);
611 
612  void SmiSub(Register dst,
613  Register src1,
614  const Operand& src2,
615  Label* on_not_smi_result,
616  Label::Distance near_jump = Label::kFar);
617 
618  void SmiSub(Register dst,
619  Register src1,
620  const Operand& src2);
621 
622  // Multiplies smi values and return the result as a smi,
623  // if possible.
624  // If dst is src1, then src1 will be destroyed, even if
625  // the operation is unsuccessful.
626  void SmiMul(Register dst,
627  Register src1,
628  Register src2,
629  Label* on_not_smi_result,
630  Label::Distance near_jump = Label::kFar);
631 
632  // Divides one smi by another and returns the quotient.
633  // Clobbers rax and rdx registers.
634  void SmiDiv(Register dst,
635  Register src1,
636  Register src2,
637  Label* on_not_smi_result,
638  Label::Distance near_jump = Label::kFar);
639 
640  // Divides one smi by another and returns the remainder.
641  // Clobbers rax and rdx registers.
642  void SmiMod(Register dst,
643  Register src1,
644  Register src2,
645  Label* on_not_smi_result,
646  Label::Distance near_jump = Label::kFar);
647 
648  // Bitwise operations.
649  void SmiNot(Register dst, Register src);
650  void SmiAnd(Register dst, Register src1, Register src2);
651  void SmiOr(Register dst, Register src1, Register src2);
652  void SmiXor(Register dst, Register src1, Register src2);
653  void SmiAndConstant(Register dst, Register src1, Smi* constant);
654  void SmiOrConstant(Register dst, Register src1, Smi* constant);
655  void SmiXorConstant(Register dst, Register src1, Smi* constant);
656 
658  Register src,
659  int shift_value);
661  Register src,
662  int shift_value,
663  Label* on_not_smi_result,
664  Label::Distance near_jump = Label::kFar);
666  Register src,
667  int shift_value);
668 
669  // Shifts a smi value to the left, and returns the result if that is a smi.
670  // Uses and clobbers rcx, so dst may not be rcx.
671  void SmiShiftLeft(Register dst,
672  Register src1,
673  Register src2);
674  // Shifts a smi value to the right, shifting in zero bits at the top, and
675  // returns the unsigned intepretation of the result if that is a smi.
676  // Uses and clobbers rcx, so dst may not be rcx.
678  Register src1,
679  Register src2,
680  Label* on_not_smi_result,
681  Label::Distance near_jump = Label::kFar);
682  // Shifts a smi value to the right, sign extending the top, and
683  // returns the signed intepretation of the result. That will always
684  // be a valid smi value, since it's numerically smaller than the
685  // original.
686  // Uses and clobbers rcx, so dst may not be rcx.
688  Register src1,
689  Register src2);
690 
691  // Specialized operations
692 
693  // Select the non-smi register of two registers where exactly one is a
694  // smi. If neither are smis, jump to the failure label.
695  void SelectNonSmi(Register dst,
696  Register src1,
697  Register src2,
698  Label* on_not_smis,
699  Label::Distance near_jump = Label::kFar);
700 
701  // Converts, if necessary, a smi to a combination of number and
702  // multiplier to be used as a scaled index.
703  // The src register contains a *positive* smi value. The shift is the
704  // power of two to multiply the index value by (e.g.
705  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
706  // The returned index register may be either src or dst, depending
707  // on what is most efficient. If src and dst are different registers,
708  // src is always unchanged.
709  SmiIndex SmiToIndex(Register dst, Register src, int shift);
710 
711  // Converts a positive smi to a negative index.
712  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
713 
714  // Add the value of a smi in memory to an int32 register.
715  // Sets flags as a normal add.
716  void AddSmiField(Register dst, const Operand& src);
717 
718  // Basic Smi operations.
719  void Move(Register dst, Smi* source) {
720  LoadSmiConstant(dst, source);
721  }
722 
723  void Move(const Operand& dst, Smi* source) {
724  Register constant = GetSmiConstant(source);
725  movq(dst, constant);
726  }
727 
728  void Push(Smi* smi);
729  void Test(const Operand& dst, Smi* source);
730 
731 
732  // ---------------------------------------------------------------------------
733  // String macros.
734 
735  // If object is a string, its map is loaded into object_map.
736  void JumpIfNotString(Register object,
737  Register object_map,
738  Label* not_string,
739  Label::Distance near_jump = Label::kFar);
740 
741 
743  Register first_object,
744  Register second_object,
745  Register scratch1,
746  Register scratch2,
747  Label* on_not_both_flat_ascii,
748  Label::Distance near_jump = Label::kFar);
749 
750  // Check whether the instance type represents a flat ASCII string. Jump to the
751  // label if not. If the instance type can be scratched specify same register
752  // for both instance type and scratch.
754  Register instance_type,
755  Register scratch,
756  Label*on_not_flat_ascii_string,
757  Label::Distance near_jump = Label::kFar);
758 
760  Register first_object_instance_type,
761  Register second_object_instance_type,
762  Register scratch1,
763  Register scratch2,
764  Label* on_fail,
765  Label::Distance near_jump = Label::kFar);
766 
767  // ---------------------------------------------------------------------------
768  // Macro instructions.
769 
770  // Load a register with a long value as efficiently as possible.
771  void Set(Register dst, int64_t x);
772  void Set(const Operand& dst, int64_t x);
773 
774  // Move if the registers are not identical.
775  void Move(Register target, Register source);
776 
777  // Bit-field support.
778  void TestBit(const Operand& dst, int bit_index);
779 
780  // Handle support
781  void Move(Register dst, Handle<Object> source);
782  void Move(const Operand& dst, Handle<Object> source);
783  void Cmp(Register dst, Handle<Object> source);
784  void Cmp(const Operand& dst, Handle<Object> source);
785  void Cmp(Register dst, Smi* src);
786  void Cmp(const Operand& dst, Smi* src);
787  void Push(Handle<Object> source);
788 
789  // Load a heap object and handle the case of new-space objects by
790  // indirecting via a global cell.
791  void LoadHeapObject(Register result, Handle<HeapObject> object);
792  void PushHeapObject(Handle<HeapObject> object);
793 
794  void LoadObject(Register result, Handle<Object> object) {
795  if (object->IsHeapObject()) {
796  LoadHeapObject(result, Handle<HeapObject>::cast(object));
797  } else {
798  Move(result, object);
799  }
800  }
801 
802  // Load a global cell into a register.
804 
805  // Emit code to discard a non-negative number of pointer-sized elements
806  // from the stack, clobbering only the rsp register.
807  void Drop(int stack_elements);
808 
809  void Call(Label* target) { call(target); }
810 
811  // Control Flow
812  void Jump(Address destination, RelocInfo::Mode rmode);
813  void Jump(ExternalReference ext);
814  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
815 
816  void Call(Address destination, RelocInfo::Mode rmode);
817  void Call(ExternalReference ext);
818  void Call(Handle<Code> code_object,
819  RelocInfo::Mode rmode,
820  unsigned ast_id = kNoASTId);
821 
822  // The size of the code generated for different call instructions.
823  int CallSize(Address destination, RelocInfo::Mode rmode) {
824  return kCallInstructionLength;
825  }
826  int CallSize(ExternalReference ext);
827  int CallSize(Handle<Code> code_object) {
828  // Code calls use 32-bit relative addressing.
830  }
831  int CallSize(Register target) {
832  // Opcode: REX_opt FF /2 m64
833  return (target.high_bit() != 0) ? 3 : 2;
834  }
835  int CallSize(const Operand& target) {
836  // Opcode: REX_opt FF /2 m64
837  return (target.requires_rex() ? 2 : 1) + target.operand_size();
838  }
839 
840  // Emit call to the code we are currently generating.
841  void CallSelf() {
842  Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
843  Call(self, RelocInfo::CODE_TARGET);
844  }
845 
846  // Non-x64 instructions.
847  // Push/pop all general purpose registers.
848  // Does not push rsp/rbp nor any of the assembler's special purpose registers
849  // (kScratchRegister, kSmiConstantRegister, kRootRegister).
850  void Pushad();
851  void Popad();
852  // Sets the stack as after performing Popad, without actually loading the
853  // registers.
854  void Dropad();
855 
856  // Compare object type for heap object.
857  // Always use unsigned comparisons: above and below, not less and greater.
858  // Incoming register is heap_object and outgoing register is map.
859  // They may be the same register, and may be kScratchRegister.
860  void CmpObjectType(Register heap_object, InstanceType type, Register map);
861 
862  // Compare instance type for map.
863  // Always use unsigned comparisons: above and below, not less and greater.
865 
866  // Check if a map for a JSObject indicates that the object has fast elements.
867  // Jump to the specified label if it does not.
868  void CheckFastElements(Register map,
869  Label* fail,
870  Label::Distance distance = Label::kFar);
871 
872  // Check if a map for a JSObject indicates that the object can have both smi
873  // and HeapObject elements. Jump to the specified label if it does not.
875  Label* fail,
876  Label::Distance distance = Label::kFar);
877 
878  // Check if a map for a JSObject indicates that the object has fast smi only
879  // elements. Jump to the specified label if it does not.
881  Label* fail,
882  Label::Distance distance = Label::kFar);
883 
884  // Check to see if maybe_number can be stored as a double in
885  // FastDoubleElements. If it can, store it at the index specified by index in
886  // the FastDoubleElements array elements, otherwise jump to fail. Note that
887  // index must not be smi-tagged.
888  void StoreNumberToDoubleElements(Register maybe_number,
889  Register elements,
890  Register index,
891  XMMRegister xmm_scratch,
892  Label* fail);
893 
894  // Compare an object's map with the specified map and its transitioned
895  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with
896  // result of map compare. If multiple map compares are required, the compare
897  // sequences branches to early_success.
898  void CompareMap(Register obj,
899  Handle<Map> map,
900  Label* early_success,
902 
903  // Check if the map of an object is equal to a specified map and branch to
904  // label if not. Skip the smi check if not required (object is known to be a
905  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
906  // against maps that are ElementsKind transition maps of the specified map.
907  void CheckMap(Register obj,
908  Handle<Map> map,
909  Label* fail,
910  SmiCheckType smi_check_type,
912 
913  // Check if the map of an object is equal to a specified map and branch to a
914  // specified target if equal. Skip the smi check if not required (object is
915  // known to be a heap object)
916  void DispatchMap(Register obj,
917  Handle<Map> map,
918  Handle<Code> success,
919  SmiCheckType smi_check_type);
920 
921  // Check if the object in register heap_object is a string. Afterwards the
922  // register map contains the object map and the register instance_type
923  // contains the instance_type. The registers map and instance_type can be the
924  // same in which case it contains the instance type afterwards. Either of the
925  // registers map and instance_type can be the same as heap_object.
927  Register map,
928  Register instance_type);
929 
930  // FCmp compares and pops the two values on top of the FPU stack.
931  // The flag results are similar to integer cmp, but requires unsigned
932  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
933  void FCmp();
934 
935  void ClampUint8(Register reg);
936 
937  void ClampDoubleToUint8(XMMRegister input_reg,
938  XMMRegister temp_xmm_reg,
939  Register result_reg,
940  Register temp_reg);
941 
942  void LoadInstanceDescriptors(Register map, Register descriptors);
943 
944  // Abort execution if argument is not a number. Used in debug code.
945  void AbortIfNotNumber(Register object);
946 
947  // Abort execution if argument is a smi. Used in debug code.
948  void AbortIfSmi(Register object);
949 
950  // Abort execution if argument is not a smi. Used in debug code.
951  void AbortIfNotSmi(Register object);
952  void AbortIfNotSmi(const Operand& object);
953 
954  // Abort execution if a 64 bit register containing a 32 bit payload does not
955  // have zeros in the top 32 bits.
957 
958  // Abort execution if argument is a string. Used in debug code.
959  void AbortIfNotString(Register object);
960 
961  // Abort execution if argument is not the root value with the given index.
962  void AbortIfNotRootValue(Register src,
963  Heap::RootListIndex root_value_index,
964  const char* message);
965 
966  // ---------------------------------------------------------------------------
967  // Exception handling
968 
969  // Push a new try handler and link it into try handler chain.
970  void PushTryHandler(StackHandler::Kind kind, int handler_index);
971 
972  // Unlink the stack handler on top of the stack from the try handler chain.
973  void PopTryHandler();
974 
975  // Activate the top handler in the try hander chain and pass the
976  // thrown value.
977  void Throw(Register value);
978 
979  // Propagate an uncatchable exception out of the current JS stack.
980  void ThrowUncatchable(Register value);
981 
982  // ---------------------------------------------------------------------------
983  // Inline caching support
984 
985  // Generate code for checking access rights - used for security checks
986  // on access to global objects across environments. The holder register
987  // is left untouched, but the scratch register and kScratchRegister,
988  // which must be different, are clobbered.
989  void CheckAccessGlobalProxy(Register holder_reg,
990  Register scratch,
991  Label* miss);
992 
993  void GetNumberHash(Register r0, Register scratch);
994 
995  void LoadFromNumberDictionary(Label* miss,
996  Register elements,
997  Register key,
998  Register r0,
999  Register r1,
1000  Register r2,
1001  Register result);
1002 
1003 
1004  // ---------------------------------------------------------------------------
1005  // Allocation support
1006 
1007  // Allocate an object in new space. If the new space is exhausted control
1008  // continues at the gc_required label. The allocated object is returned in
1009  // result and end of the new object is returned in result_end. The register
1010  // scratch can be passed as no_reg in which case an additional object
1011  // reference will be added to the reloc info. The returned pointers in result
1012  // and result_end have not yet been tagged as heap objects. If
1013  // result_contains_top_on_entry is true the content of result is known to be
1014  // the allocation top on entry (could be result_end from a previous call to
1015  // AllocateInNewSpace). If result_contains_top_on_entry is true scratch
1016  // should be no_reg as it is never used.
1017  void AllocateInNewSpace(int object_size,
1018  Register result,
1019  Register result_end,
1020  Register scratch,
1021  Label* gc_required,
1023 
1024  void AllocateInNewSpace(int header_size,
1025  ScaleFactor element_size,
1026  Register element_count,
1027  Register result,
1028  Register result_end,
1029  Register scratch,
1030  Label* gc_required,
1032 
1033  void AllocateInNewSpace(Register object_size,
1034  Register result,
1035  Register result_end,
1036  Register scratch,
1037  Label* gc_required,
1039 
1040  // Undo allocation in new space. The object passed and objects allocated after
1041  // it will no longer be allocated. Make sure that no pointers are left to the
1042  // object(s) no longer allocated as they would be invalid when allocation is
1043  // un-done.
1044  void UndoAllocationInNewSpace(Register object);
1045 
1046  // Allocate a heap number in new space with undefined value. Returns
1047  // tagged pointer in result register, or jumps to gc_required if new
1048  // space is full.
1049  void AllocateHeapNumber(Register result,
1050  Register scratch,
1051  Label* gc_required);
1052 
1053  // Allocate a sequential string. All the header fields of the string object
1054  // are initialized.
1055  void AllocateTwoByteString(Register result,
1056  Register length,
1057  Register scratch1,
1058  Register scratch2,
1059  Register scratch3,
1060  Label* gc_required);
1061  void AllocateAsciiString(Register result,
1062  Register length,
1063  Register scratch1,
1064  Register scratch2,
1065  Register scratch3,
1066  Label* gc_required);
1067 
1068  // Allocate a raw cons string object. Only the map field of the result is
1069  // initialized.
1070  void AllocateTwoByteConsString(Register result,
1071  Register scratch1,
1072  Register scratch2,
1073  Label* gc_required);
1074  void AllocateAsciiConsString(Register result,
1075  Register scratch1,
1076  Register scratch2,
1077  Label* gc_required);
1078 
1079  // Allocate a raw sliced string object. Only the map field of the result is
1080  // initialized.
1082  Register scratch1,
1083  Register scratch2,
1084  Label* gc_required);
1085  void AllocateAsciiSlicedString(Register result,
1086  Register scratch1,
1087  Register scratch2,
1088  Label* gc_required);
1089 
1090  // ---------------------------------------------------------------------------
1091  // Support functions.
1092 
1093  // Check if result is zero and op is negative.
1094  void NegativeZeroTest(Register result, Register op, Label* then_label);
1095 
1096  // Check if result is zero and op is negative in code using jump targets.
1097  void NegativeZeroTest(CodeGenerator* cgen,
1098  Register result,
1099  Register op,
1100  JumpTarget* then_target);
1101 
1102  // Check if result is zero and any of op1 and op2 are negative.
1103  // Register scratch is destroyed, and it must be different from op2.
1104  void NegativeZeroTest(Register result, Register op1, Register op2,
1105  Register scratch, Label* then_label);
1106 
1107  // Try to get function prototype of a function and puts the value in
1108  // the result register. Checks that the function really is a
1109  // function and jumps to the miss label if the fast checks fail. The
1110  // function register will be untouched; the other register may be
1111  // clobbered.
1112  void TryGetFunctionPrototype(Register function,
1113  Register result,
1114  Label* miss,
1115  bool miss_on_bound_function = false);
1116 
1117  // Generates code for reporting that an illegal operation has
1118  // occurred.
1119  void IllegalOperation(int num_arguments);
1120 
1121  // Picks out an array index from the hash field.
1122  // Register use:
1123  // hash - holds the index's hash. Clobbered.
1124  // index - holds the overwritten index on exit.
1125  void IndexFromHash(Register hash, Register index);
1126 
1127  // Find the function context up the context chain.
1128  void LoadContext(Register dst, int context_chain_length);
1129 
1130  // Conditionally load the cached Array transitioned map of type
1131  // transitioned_kind from the global context if the map in register
1132  // map_in_out is the cached Array map in the global context of
1133  // expected_kind.
1135  ElementsKind expected_kind,
1136  ElementsKind transitioned_kind,
1137  Register map_in_out,
1138  Register scratch,
1139  Label* no_map_match);
1140 
1141  // Load the initial map for new Arrays from a JSFunction.
1142  void LoadInitialArrayMap(Register function_in,
1143  Register scratch,
1144  Register map_out,
1145  bool can_have_holes);
1146 
1147  // Load the global function with the given index.
1148  void LoadGlobalFunction(int index, Register function);
1149 
1150  // Load the initial map from the global function. The registers
1151  // function and map can be the same.
1152  void LoadGlobalFunctionInitialMap(Register function, Register map);
1153 
1154  // ---------------------------------------------------------------------------
1155  // Runtime calls
1156 
1157  // Call a code stub.
1158  void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId);
1159 
1160  // Tail call a code stub (jump).
1161  void TailCallStub(CodeStub* stub);
1162 
1163  // Return from a code stub after popping its arguments.
1164  void StubReturn(int argc);
1165 
1166  // Call a runtime routine.
1167  void CallRuntime(const Runtime::Function* f, int num_arguments);
1168 
1169  // Call a runtime function and save the value of XMM registers.
1171 
1172  // Convenience function: Same as above, but takes the fid instead.
1173  void CallRuntime(Runtime::FunctionId id, int num_arguments);
1174 
1175  // Convenience function: call an external reference.
1176  void CallExternalReference(const ExternalReference& ext,
1177  int num_arguments);
1178 
1179  // Tail call of a runtime routine (jump).
1180  // Like JumpToExternalReference, but also takes care of passing the number
1181  // of parameters.
1182  void TailCallExternalReference(const ExternalReference& ext,
1183  int num_arguments,
1184  int result_size);
1185 
1186  // Convenience function: tail call a runtime routine (jump).
1188  int num_arguments,
1189  int result_size);
1190 
1191  // Jump to a runtime routine.
1192  void JumpToExternalReference(const ExternalReference& ext, int result_size);
1193 
1194  // Prepares stack to put arguments (aligns and so on). WIN64 calling
1195  // convention requires to put the pointer to the return value slot into
1196  // rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves
1197  // context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
1198  // inside the exit frame (not GCed) accessible via StackSpaceOperand.
1199  void PrepareCallApiFunction(int arg_stack_space);
1200 
1201  // Calls an API function. Allocates HandleScope, extracts returned value
1202  // from handle and propagates exceptions. Clobbers r14, r15, rbx and
1203  // caller-save registers. Restores context. On return removes
1204  // stack_space * kPointerSize (GCed).
1205  void CallApiFunctionAndReturn(Address function_address, int stack_space);
1206 
1207  // Before calling a C-function from generated code, align arguments on stack.
1208  // After aligning the frame, arguments must be stored in esp[0], esp[4],
1209  // etc., not pushed. The argument count assumes all arguments are word sized.
1210  // The number of slots reserved for arguments depends on platform. On Windows
1211  // stack slots are reserved for the arguments passed in registers. On other
1212  // platforms stack slots are only reserved for the arguments actually passed
1213  // on the stack.
1214  void PrepareCallCFunction(int num_arguments);
1215 
1216  // Calls a C function and cleans up the space for arguments allocated
1217  // by PrepareCallCFunction. The called function is not allowed to trigger a
1218  // garbage collection, since that might move the code and invalidate the
1219  // return address (unless this is somehow accounted for by the called
1220  // function).
1221  void CallCFunction(ExternalReference function, int num_arguments);
1222  void CallCFunction(Register function, int num_arguments);
1223 
1224  // Calculate the number of stack slots to reserve for arguments when calling a
1225  // C function.
1226  int ArgumentStackSlotsForCFunctionCall(int num_arguments);
1227 
1228  // ---------------------------------------------------------------------------
1229  // Utilities
1230 
1231  void Ret();
1232 
1233  // Return and drop arguments from stack, where the number of arguments
1234  // may be bigger than 2^16 - 1. Requires a scratch register.
1235  void Ret(int bytes_dropped, Register scratch);
1236 
1238  ASSERT(!code_object_.is_null());
1239  return code_object_;
1240  }
1241 
1242  // Copy length bytes from source to destination.
1243  // Uses scratch register internally (if you have a low-eight register
1244  // free, do use it, otherwise kScratchRegister will be used).
1245  // The min_length is a minimum limit on the value that length will have.
1246  // The algorithm has some special cases that might be omitted if the string
1247  // is known to always be long.
1248  void CopyBytes(Register destination,
1249  Register source,
1250  Register length,
1251  int min_length = 0,
1252  Register scratch = kScratchRegister);
1253 
1254  // Initialize fields with filler values. Fields starting at |start_offset|
1255  // not including end_offset are overwritten with the value in |filler|. At
1256  // the end the loop, |start_offset| takes the value of |end_offset|.
1257  void InitializeFieldsWithFiller(Register start_offset,
1258  Register end_offset,
1259  Register filler);
1260 
1261 
1262  // ---------------------------------------------------------------------------
1263  // StatsCounter support
1264 
1265  void SetCounter(StatsCounter* counter, int value);
1266  void IncrementCounter(StatsCounter* counter, int value);
1267  void DecrementCounter(StatsCounter* counter, int value);
1268 
1269 
1270  // ---------------------------------------------------------------------------
1271  // Debugging
1272 
1273  // Calls Abort(msg) if the condition cc is not satisfied.
1274  // Use --debug_code to enable.
1275  void Assert(Condition cc, const char* msg);
1276 
1277  void AssertFastElements(Register elements);
1278 
1279  // Like Assert(), but always enabled.
1280  void Check(Condition cc, const char* msg);
1281 
1282  // Print a message to stdout and abort execution.
1283  void Abort(const char* msg);
1284 
1285  // Check that the stack is aligned.
1286  void CheckStackAlignment();
1287 
1288  // Verify restrictions about code generated in stubs.
1289  void set_generating_stub(bool value) { generating_stub_ = value; }
1290  bool generating_stub() { return generating_stub_; }
1291  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
1292  bool allow_stub_calls() { return allow_stub_calls_; }
1293  void set_has_frame(bool value) { has_frame_ = value; }
1294  bool has_frame() { return has_frame_; }
1295  inline bool AllowThisStubCall(CodeStub* stub);
1296 
1298  return SafepointRegisterStackIndex(reg.code());
1299  }
1300 
1301  // Activation support.
1302  void EnterFrame(StackFrame::Type type);
1303  void LeaveFrame(StackFrame::Type type);
1304 
1305  // Expects object in rax and returns map with validated enum cache
1306  // in rax. Assumes that any other register can be used as a scratch.
1307  void CheckEnumCache(Register null_value,
1308  Label* call_runtime);
1309 
1310  private:
1311  // Order general registers are pushed by Pushad.
1312  // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
1313  static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
1314  static const int kNumSafepointSavedRegisters = 11;
1315  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1316 
1317  bool generating_stub_;
1318  bool allow_stub_calls_;
1319  bool has_frame_;
1320  bool root_array_available_;
1321 
1322  // Returns a register holding the smi value. The register MUST NOT be
1323  // modified. It may be the "smi 1 constant" register.
1324  Register GetSmiConstant(Smi* value);
1325 
1326  // Moves the smi value to the destination register.
1327  void LoadSmiConstant(Register dst, Smi* value);
1328 
1329  // This handle will be patched with the code object on installation.
1330  Handle<Object> code_object_;
1331 
1332  // Helper functions for generating invokes.
1333  void InvokePrologue(const ParameterCount& expected,
1334  const ParameterCount& actual,
1335  Handle<Code> code_constant,
1336  Register code_register,
1337  Label* done,
1338  bool* definitely_mismatches,
1339  InvokeFlag flag,
1340  Label::Distance near_jump = Label::kFar,
1341  const CallWrapper& call_wrapper = NullCallWrapper(),
1342  CallKind call_kind = CALL_AS_METHOD);
1343 
1344  void EnterExitFramePrologue(bool save_rax);
1345 
1346  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
1347  // accessible via StackSpaceOperand.
1348  void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
1349 
1350  void LeaveExitFrameEpilogue();
1351 
1352  // Allocation support helpers.
1353  // Loads the top of new-space into the result register.
1354  // Otherwise the address of the new-space top is loaded into scratch (if
1355  // scratch is valid), and the new-space top is loaded into result.
1356  void LoadAllocationTopHelper(Register result,
1357  Register scratch,
1359  // Update allocation top with value in result_end register.
1360  // If scratch is valid, it contains the address of the allocation top.
1361  void UpdateAllocationTopHelper(Register result_end, Register scratch);
1362 
1363  // Helper for PopHandleScope. Allowed to perform a GC and returns
1364  // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
1365  // possibly returns a failure object indicating an allocation failure.
1366  Object* PopHandleScopeHelper(Register saved,
1367  Register scratch,
1368  bool gc_allowed);
1369 
1370  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1371  void InNewSpace(Register object,
1372  Register scratch,
1373  Condition cc,
1374  Label* branch,
1375  Label::Distance distance = Label::kFar);
1376 
1377  // Helper for finding the mark bits for an address. Afterwards, the
1378  // bitmap register points at the word with the mark bits and the mask
1379  // the position of the first bit. Uses rcx as scratch and leaves addr_reg
1380  // unchanged.
1381  inline void GetMarkBits(Register addr_reg,
1382  Register bitmap_reg,
1383  Register mask_reg);
1384 
1385  // Helper for throwing exceptions. Compute a handler address and jump to
1386  // it. See the implementation for register usage.
1387  void JumpToHandlerEntry();
1388 
1389  // Compute memory operands for safepoint stack slots.
1390  Operand SafepointRegisterSlot(Register reg);
1391  static int SafepointRegisterStackIndex(int reg_code) {
1392  return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
1393  }
1394 
1395  // Needs access to SafepointRegisterStackIndex for optimized frame
1396  // traversal.
1397  friend class OptimizedFrame;
1398 };
1399 
1400 
1401 // The code patcher is used to patch (typically) small parts of code e.g. for
1402 // debugging and other types of instrumentation. When using the code patcher
1403 // the exact number of bytes specified must be emitted. Is not legal to emit
1404 // relocation information. If any of these constraints are violated it causes
1405 // an assertion.
1406 class CodePatcher {
1407  public:
1408  CodePatcher(byte* address, int size);
1409  virtual ~CodePatcher();
1410 
1411  // Macro assembler to emit code.
1412  MacroAssembler* masm() { return &masm_; }
1413 
1414  private:
1415  byte* address_; // The address of the code being patched.
1416  int size_; // Number of bytes of the expected patch size.
1417  MacroAssembler masm_; // Macro assembler used to generate the code.
1418 };
1419 
1420 
1421 // -----------------------------------------------------------------------------
1422 // Static helper functions.
1423 
1424 // Generate an Operand for loading a field from an object.
1425 inline Operand FieldOperand(Register object, int offset) {
1426  return Operand(object, offset - kHeapObjectTag);
1427 }
1428 
1429 
1430 // Generate an Operand for loading an indexed field from an object.
1431 inline Operand FieldOperand(Register object,
1432  Register index,
1433  ScaleFactor scale,
1434  int offset) {
1435  return Operand(object, index, scale, offset - kHeapObjectTag);
1436 }
1437 
1438 
1439 inline Operand ContextOperand(Register context, int index) {
1440  return Operand(context, Context::SlotOffset(index));
1441 }
1442 
1443 
1444 inline Operand GlobalObjectOperand() {
1446 }
1447 
1448 
1449 // Provides access to exit frame stack space (not GCed).
1450 inline Operand StackSpaceOperand(int index) {
1451 #ifdef _WIN64
1452  const int kShaddowSpace = 4;
1453  return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
1454 #else
1455  return Operand(rsp, index * kPointerSize);
1456 #endif
1457 }
1458 
1459 
1460 
1461 #ifdef GENERATED_CODE_COVERAGE
1462 extern void LogGeneratedCodeCoverage(const char* file_line);
1463 #define CODE_COVERAGE_STRINGIFY(x) #x
1464 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1465 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1466 #define ACCESS_MASM(masm) { \
1467  byte* x64_coverage_function = \
1468  reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1469  masm->pushfd(); \
1470  masm->pushad(); \
1471  masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1472  masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1473  masm->pop(rax); \
1474  masm->popad(); \
1475  masm->popfd(); \
1476  } \
1477  masm->
1478 #else
1479 #define ACCESS_MASM(masm) masm->
1480 #endif
1481 
1482 } } // namespace v8::internal
1483 
1484 #endif // V8_X64_MACRO_ASSEMBLER_X64_H_
byte * Address
Definition: globals.h:172
void CallRuntime(const Runtime::Function *f, int num_arguments)
void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg)
void Push(Handle< Object > handle)
void JumpIfSmiEqualsConstant(Register src, Smi *constant, Label *on_equals, Label::Distance near_jump=Label::kFar)
void ClampUint8(Register output_reg, Register input_reg)
Isolate * isolate() const
Definition: assembler.h:62
void JumpIfNotString(Register object, Register object_map, Label *not_string, Label::Distance near_jump=Label::kFar)
void Assert(Condition cond, const char *msg)
void SmiShiftArithmeticRight(Register dst, Register src1, Register src2)
void JumpIfNotValidSmiValue(Register src, Label *on_invalid, Label::Distance near_jump=Label::kFar)
static int SlotOffset(int index)
Definition: contexts.h:408
void LoadRootIndexed(Register destination, Register variable_offset, int fixed_offset)
int LoadAddressSize(ExternalReference source)
void RecordWriteContextSlot(Register context, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action=EMIT_REMEMBERED_SET, SmiCheck smi_check=INLINE_SMI_CHECK)
const Register r3
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift)
void SmiDiv(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void SmiOrIfSmis(Register dst, Register src1, Register src2, Label *on_not_smis, Label::Distance near_jump=Label::kFar)
void SmiOr(Register dst, Register src1, Register src2)
void AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label *gc_required)
Condition CheckUInteger32ValidSmiValue(Register src)
void LeaveExitFrame(bool save_doubles, Register argument_count)
void LoadGlobalCell(Register dst, Handle< JSGlobalPropertyCell > cell)
static Smi * FromInt(int value)
Definition: objects-inl.h:973
void RecordWriteArray(Register array, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action=EMIT_REMEMBERED_SET, SmiCheck smi_check=INLINE_SMI_CHECK)
void JumpToExternalReference(const ExternalReference &builtin)
void Cmp(Register dst, Handle< Object > source)
void LoadInstanceDescriptors(Register map, Register descriptors)
void AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label *gc_required)
void JumpIfNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label *not_flat_ascii_strings)
void LoadFromNumberDictionary(Label *miss, Register elements, Register key, Register result, Register t0, Register t1, Register t2)
const Register rsi
void addq(Register dst, Register src)
void SmiAdd(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void GetBuiltinEntry(Register target, Builtins::JavaScript id)
void JumpIfSmi(Register value, Label *smi_label)
void DispatchMap(Register obj, Register scratch, Handle< Map > map, Handle< Code > success, SmiCheckType smi_check_type)
Flag flags[]
Definition: flags.cc:1467
bool AllowThisStubCall(CodeStub *stub)
void StoreToSafepointRegisterSlot(Register src, Register dst)
void CheckSmiToIndicator(Register dst, Register src)
static const int kCallInstructionLength
void CheckFastObjectElements(Register map, Register scratch, Label *fail)
SmiIndex SmiToIndex(Register dst, Register src, int shift)
bool AreAliased(Register r1, Register r2, Register r3, Register r4)
#define ASSERT(condition)
Definition: checks.h:270
void RecordWriteField(Register object, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action=EMIT_REMEMBERED_SET, SmiCheck smi_check=INLINE_SMI_CHECK)
static const int kShortCallInstructionLength
Condition CheckIsMinSmi(Register src)
void PushTryHandler(StackHandler::Kind kind, int handler_index)
void LoadTransitionedArrayMapConditional(ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label *no_map_match)
void SmiAndConstant(Register dst, Register src1, Smi *constant)
void SmiOrConstant(Register dst, Register src1, Smi *constant)
MemOperand GlobalObjectOperand()
void IncrementCounter(StatsCounter *counter, int value, Register scratch1, Register scratch2)
const Register r2
void Abort(const char *msg)
void SmiSub(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void SmiTryAddConstant(Register dst, Register src, Smi *constant, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
MemOperand ContextOperand(Register context, int index)
void CheckMap(Register obj, Register scratch, Handle< Map > map, Label *fail, SmiCheckType smi_check_type, CompareMapMode mode=REQUIRE_EXACT_MAP)
void SmiMod(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
Condition CheckBothSmi(Register first, Register second)
void CompareRoot(Register obj, Heap::RootListIndex index)
void PushHeapObject(Handle< HeapObject > object)
void DecrementCounter(StatsCounter *counter, int value, Register scratch1, Register scratch2)
static int SafepointRegisterStackIndex(Register reg)
static const int kNumRegisters
Definition: assembler-arm.h:73
void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label *gc_required)
void Move(Register dst, Smi *source)
const Register kRootRegister
void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1=no_reg, Register exclusion2=no_reg, Register exclusion3=no_reg)
void JumpIfInNewSpace(Register object, Register scratch, Label *branch, Label::Distance distance=Label::kFar)
uint8_t byte
Definition: globals.h:171
void JumpIfInstanceTypeIsNotSequentialAscii(Register type, Register scratch, Label *failure)
const unsigned kNoASTId
Definition: assembler.h:54
int CallSize(const Operand &target)
T ** location() const
Definition: handles.h:75
void SmiToInteger64(Register dst, Register src)
void AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char *message)
void Load(Register destination, ExternalReference source)
void LeaveFrame(StackFrame::Type type)
void CheckFastElements(Register map, Register scratch, Label *fail)
void LoadGlobalFunction(int index, Register function)
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label *condition_met)
void Integer64PlusConstantToSmi(Register dst, Register src, int constant)
void TryGetFunctionPrototype(Register function, Register result, Register scratch, Label *miss, bool miss_on_bound_function=false)
void AbortIfNotSmi(Register object)
const int kPointerSize
Definition: globals.h:234
void SmiMul(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void SmiShiftLogicalRight(Register dst, Register src1, Register src2, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void CallCFunction(ExternalReference function, int num_arguments)
Condition IsObjectStringType(Register obj, Register type)
void AllocateAsciiConsString(Register result, Register length, Register scratch1, Register scratch2, Label *gc_required)
Operand FieldOperand(Register object, int offset)
void SmiShiftLeftConstant(Register dst, Register src, int shift_value)
void CheckFastSmiElements(Register map, Register scratch, Label *fail)
void AbortIfNotZeroExtended(Register reg)
const int kHeapObjectTag
Definition: v8.h:3848
void Jump(Register target, Condition cond=al)
void RecordWrite(Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action=EMIT_REMEMBERED_SET, SmiCheck smi_check=INLINE_SMI_CHECK)
void JumpIfDataObject(Register value, Register scratch, Label *not_data_object)
void SmiXorConstant(Register dst, Register src1, Smi *constant)
Operand ExternalOperand(ExternalReference reference, Register scratch=kScratchRegister)
void CopyBytes(Register src, Register dst, Register length, Register scratch)
void SmiXor(Register dst, Register src1, Register src2)
const Register rsp
void LoadHeapObject(Register dst, Handle< HeapObject > object)
void SmiShiftLeft(Register dst, Register src1, Register src2)
void Throw(Register value)
Condition CheckInteger32ValidSmiValue(Register src)
void Move(Register dst, Handle< Object > value)
Operand StackSpaceOperand(int index)
void EnterApiExitFrame(int argc)
void PrepareCallApiFunction(int argc)
void SetCounter(StatsCounter *counter, int value, Register scratch1, Register scratch2)
SmiIndex(Register index_register, ScaleFactor scale)
void InvokeCode(Register code, const ParameterCount &expected, const ParameterCount &actual, InvokeFlag flag, const CallWrapper &call_wrapper, CallKind call_kind)
const Register r0
void NegativeZeroTest(Register result, Register op, Label *then_label)
const int kRootRegisterBias
MacroAssembler(Isolate *isolate, void *buffer, int size)
void SmiCompareInteger32(const Operand &dst, Register src)
void LoadContext(Register dst, int context_chain_length)
void CallExternalReference(const ExternalReference &ext, int num_arguments)
static int CallSize(Register target, Condition cond=al)
void StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register receiver_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label *fail)
void JumpIfNotInNewSpace(Register object, Register scratch, Label *branch, Label::Distance distance=Label::kFar)
void AssertFastElements(Register elements)
void LoadAddress(Register destination, ExternalReference source)
void JumpIfNotBothSmi(Register reg1, Register reg2, Label *on_not_both_smi)
void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label *on_black)
void SmiSubConstant(Register dst, Register src, Smi *constant)
void AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label *gc_required)
void SmiAnd(Register dst, Register src1, Register src2)
void Drop(int count, Condition cond=al)
void Integer32ToSmiField(const Operand &dst, Register src)
void JumpIfUIntNotValidSmiValue(Register src, Label *on_invalid, Label::Distance near_jump=Label::kFar)
int CallSize(Address destination, RelocInfo::Mode rmode)
InvokeFlag
void GetBuiltinFunction(Register target, Builtins::JavaScript id)
void IllegalOperation(int num_arguments)
void CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label *miss)
void CallApiFunctionAndReturn(ExternalReference function, int stack_space)
void LoadObject(Register result, Handle< Object > object)
const Register r1
void SmiTest(Register src)
void SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value)
void CallRuntimeSaveDoubles(Runtime::FunctionId id)
bool is_null() const
Definition: handles.h:87
void ThrowUncatchable(Register value)
void StoreRoot(Register source, Heap::RootListIndex index, Condition cond=al)
void AllocateInNewSpace(int object_size, Register result, Register scratch1, Register scratch2, Label *gc_required, AllocationFlags flags)
void SmiCompare(Register smi1, Register smi2)
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch)
void CompareMap(Register obj, Register scratch, Handle< Map > map, Label *early_success, CompareMapMode mode=REQUIRE_EXACT_MAP)
const int kNumSafepointRegisters
Definition: frames-arm.h:92
void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1=no_reg, Register exclusion2=no_reg, Register exclusion3=no_reg)
const Register kScratchRegister
void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch)
void GetNumberHash(Register t0, Register scratch)
void AbortIfNotString(Register object)
void InvokeFunction(Register function, const ParameterCount &actual, InvokeFlag flag, const CallWrapper &call_wrapper, CallKind call_kind)
const int kSmiShiftSize
Definition: v8.h:3899
const int kSmiTagSize
Definition: v8.h:3854
void Store(ExternalReference destination, Register source)
void PositiveSmiDivPowerOfTwoToInteger32(Register dst, Register src, int power)
void JumpIfBothInstanceTypesAreNotSequentialAscii(Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label *failure)
kPropertyAccessorsOffset kNamedPropertyHandlerOffset kInstanceTemplateOffset kAccessCheckInfoOffset kEvalFrominstructionsOffsetOffset kThisPropertyAssignmentsOffset flag
Definition: objects-inl.h:3682
void SmiToInteger32(Register dst, Register src)
void UndoAllocationInNewSpace(Register object, Register scratch)
void SmiNot(Register dst, Register src)
void LoadFromSafepointRegisterSlot(Register dst, Register src)
void AbortIfNotNumber(Register object)
void Call(Register target, Condition cond=al)
void Set(Register dst, const Immediate &x)
void SmiShiftLogicalRightConstant(Register dst, Register src, int shift_value, Label *on_not_smi_result, Label::Distance near_jump=Label::kFar)
void AllocateAsciiSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label *gc_required)
Condition CheckNonNegativeSmi(Register src)
void Check(Condition cond, const char *msg)
void SmiAddConstant(Register dst, Register src, Smi *constant)
void LoadInitialArrayMap(Register function_in, Register scratch, Register map_out, bool can_have_holes)
void JumpIfNotSmi(Register value, Label *not_smi_label)
Condition CheckEitherSmi(Register first, Register second, Register scratch=kScratchRegister)
void SmiNeg(Register dst, Register src, Label *on_smi_result, Label::Distance near_jump=Label::kFar)
const int kSmiConstantRegisterValue
void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper &call_wrapper=NullCallWrapper())
void AddSmiField(Register dst, const Operand &src)
void TestBit(const Operand &dst, int bit_index)
Condition CheckSmi(Register src)
void SelectNonSmi(Register dst, Register src1, Register src2, Label *on_not_smis, Label::Distance near_jump=Label::kFar)
void TailCallStub(CodeStub *stub, Condition cond=al)
CodePatcher(byte *address, int instructions)
const Register no_reg
void EnsureNotWhite(Register object, Register scratch1, Register scratch2, Register scratch3, Label *object_is_white_and_not_data)
void Integer32ToSmi(Register dst, Register src)
const Register kSmiConstantRegister
void CallStub(CodeStub *stub, Condition cond=al)
void IndexFromHash(Register hash, Register index)
void TailCallExternalReference(const ExternalReference &ext, int num_arguments, int result_size)
Condition CheckBothNonNegativeSmi(Register first, Register second)
int ArgumentStackSlotsForCFunctionCall(int num_arguments)
void EnterExitFrame(bool save_doubles, int stack_space=0)
void InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler)
int CallSize(Handle< Code > code_object)
void TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size)
void SetCallKind(Register dst, CallKind kind)
void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label *gc_required)
void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond=al)
void RememberedSetHelper(Register object, Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then)
void AbortIfSmi(Register object)
void JumpUnlessBothNonNegativeSmi(Register src1, Register src2, Label *on_not_both_smi, Label::Distance near_jump=Label::kFar)
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power)
void Test(const Operand &dst, Smi *source)
void PushRoot(Heap::RootListIndex index)
void CmpObjectType(Register heap_object, InstanceType type, Register map)
FlagType type() const
Definition: flags.cc:1358
void CmpInstanceType(Register map, InstanceType type)
void JumpUnlessNonNegativeSmi(Register src, Label *on_not_smi, Label::Distance near_jump=Label::kFar)
void EnterFrame(StackFrame::Type type)
void movq(const Operand &dst, Register src)
void PushAddress(ExternalReference source)
void CheckEnumCache(Register null_value, Label *call_runtime)
void Move(const Operand &dst, Smi *source)
const Register r4